Die u:cris Detailansicht:

Incompressibility Estimates for the Laughlin Phase, Part II

Autor(en)
Nicolas Rougerie, Jakob Yngvason
Abstrakt

We consider fractional quantum Hall states built on Laughlin's original N-body wave-functions, i.e., they are of the form holomorphic * gaussian and vanish when two particles come close, with a given polynomial rate. Such states appear naturally when looking for the ground state of 2D particles in strong magnetic fields, interacting via repulsive forces and subject to an external potential due to trapping and/or disorder. We prove that all functions in this class satisfy a universal local density upper bound, in a suitable weak sense. Such bounds are useful to investigate the response of fractional quantum Hall phases to variations of the external potential. Contrary to our previous results for a restricted class of wave-functions, the bound we obtain here is not optimal, but it does not require any additional assumptions on the wave-function, besides analyticity and symmetry of the pre-factor modifying the Laughlin function.

Organisation(en)
Mathematische Physik
Externe Organisation(en)
Université Joseph-Fourier (Grenoble-I)
Journal
Communications in Mathematical Physics
Band
339
Seiten
263-277
Anzahl der Seiten
15
ISSN
0010-3616
DOI
https://doi.org/10.1007/s00220-015-2400-2
Publikationsdatum
10-2015
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
Schlagwörter
ASJC Scopus Sachgebiete
Statistical and Nonlinear Physics, Mathematical Physics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/f917d15e-774d-4cd7-b7bd-3ce51c47ba76