Die u:cris Detailansicht:

Schwarzschild geometry emerging from matrix models

Autor(en)
Daniel Blaschke, Harold Steinacker
Abstrakt

We demonstrate how various geometries can emerge from Yang-Mills-type matrix models with branes, and consider the examples of Schwarzschild and Reissner-Nordstrom geometries. We provide an explicit embedding of these branes in R-2,R-5 and R-4,R-6, as well as an appropriate Poisson resp. symplectic structure which determines the non-commutativity of spacetime. The embedding is asymptotically flat with the asymptotically constant theta(mu nu) for large r, and therefore suitable for a generalization to many-body configurations. This is an illustration of our previous work (Blaschke and Steinacker 2010 Class. Quantum Grav. 27 165010 (arXiv: 1003.4132)), where we have shown how the Einstein-Hilbert action can be realized within such matrix models.

Organisation(en)
Mathematische Physik
Journal
Classical and Quantum Gravity
Band
27
Anzahl der Seiten
20
ISSN
0264-9381
DOI
https://doi.org/10.1088/0264-9381/27/18/185020
Publikationsdatum
2010
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/ed1ebc12-5118-4688-8793-6eb2cff61e55