Die u:cris Detailansicht:
Local Well-Posedness for the Einstein--Vlasov System
- Autor(en)
- David Fajman
- Abstrakt
We prove a local well-posedness result for the Einstein-Vlasov system in constant mean curvature-spatial harmonic gauge introduced in [L. Andersson and V. Moncrief, Ann. Henri Poincaré, 4 (2003), pp. 1-34], where local well-posedness for the vacuum Einstein equations is established. This work is based on the techniques developed therein. In addition, we use the regularity theory and techniques for proving the existence of solutions to the Einstein-Vlasov system, recently established in [H. Ringström, Oxford Math. Monogr., 2013], where the local stability problem for the Einstein-Vlasov system is solved in generalized harmonic gauge.
- Organisation(en)
- Gravitationsphysik
- Journal
- SIAM Journal on Mathematical Analysis
- Band
- 48
- Seiten
- 3270-3321
- Anzahl der Seiten
- 52
- ISSN
- 0036-1410
- DOI
- https://doi.org/10.1137/15M1030236
- Publikationsdatum
- 2016
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103028 Relativitätstheorie, 103019 Mathematische Physik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Computational Mathematics, Analysis, Applied Mathematics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/3c4fd702-2a02-432d-aba9-9ac6d40f48d7