Die u:cris Detailansicht:
Fractional chiral hinge insulator
- Autor(en)
- Anna Hackenbroich, Ana Hudomal, Norbert Schuch, B. Andrei Bernevig, Nicolas Regnault
- Abstrakt
We propose and study a wave function describing an interacting three-dimensional fractional chiral hinge insulator (FCHI) constructed by Gutzwiller projection of two noninteracting second-order topological insulators with chiral hinge modes at half filling. We use large-scale variational Monte Carlo computations to characterize the model states via the entanglement entropy and charge-spin fluctuations. We show that the FCHI possesses fractional chiral hinge modes characterized by a central charge c = 1 and Luttinger parameter K = 1/2, like the edge modes of a Laughlin 1/2 state. The bulk and surface topology is characterized by the topological entanglement entropy (TEE) correction to the area law. While our computations indicate a vanishing bulk TEE, we show that the gapped surfaces host an unconventional two-dimensional topological phase. In a clear departure from the physics of a Laughlin 1/2 state, we find a TEE per surface compatible with (In root 2)/2, half that of a Laughlin 1/2 state. This value cannot be obtained from topological quantum field theory for purely two-dimensional systems. For the sake of completeness, we also investigate the topological degeneracy.
- Organisation(en)
- Quantenoptik, Quantennanophysik und Quanteninformation, Institut für Mathematik
- Externe Organisation(en)
- Max-Planck-Institut für Quantenoptik, Munich Center for Quantum Science and Technology (MCQST), University of Belgrade, University of Leeds, Princeton University, Université de recherche Paris Sciences et Lettres
- Journal
- Physical Review B
- Band
- 103
- Anzahl der Seiten
- 6
- ISSN
- 2469-9950
- DOI
- https://doi.org/10.1103/PhysRevB.103.L161110
- Publikationsdatum
- 04-2021
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103015 Kondensierte Materie, 103018 Materialphysik
- ASJC Scopus Sachgebiete
- Electronic, Optical and Magnetic Materials, Condensed Matter Physics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/e0cc91d4-bcfd-4e31-80e3-14d639cf1b57