Die u:cris Detailansicht:
High-fidelity four-photon GHZ states on chip
- Autor(en)
- Mathias Pont, Giacomo Corrielli, Andreas Fyrillas, Iris Agresti, Gonzalo Carvacho, Nicolas Maring, Pierre Emmanuel Emeriau, Francesco Ceccarelli, Ricardo Albiero, Paulo Henrique Dias Ferreira, Niccolo Somaschi, Jean Senellart, Isabelle Sagnes, Martina Morassi, Aristide Lemaître, Pascale Senellart, Fabio Sciarrino, Marco Liscidini, Nadia Belabas, Roberto Osellame
- Abstrakt
Mutually entangled multi-photon states are at the heart of all-optical quantum technologies. While impressive progresses have been reported in the generation of such quantum light states using free space apparatus, high-fidelity high-rate on-chip entanglement generation is crucial for future scalability. In this work, we use a bright quantum-dot based single-photon source to demonstrate the high fidelity generation of 4-photon Greenberg-Horne-Zeilinger (GHZ) states with a low-loss reconfigurable glass photonic circuit. We reconstruct the density matrix of the generated states using full quantum-state tomography reaching an experimental fidelity to the target state of FGHZ4=(86.0±0.4)%, and a purity of PGHZ4=(76.3±0.6)%. The entanglement of the generated states is certified with a semi device-independent approach through the violation of a Bell-like inequality by more than 39 standard deviations. Finally, we carry out a four-partite quantum secret sharing protocol on-chip where a regulator shares with three interlocutors a sifted key with up to 1978 bits, achieving a qubit-error rate of 10.87%. These results establish that the quantum-dot technology combined with glass photonic circuitry offers a viable path for entanglement generation and distribution.
- Organisation(en)
- Quantenoptik, Quantennanophysik und Quanteninformation
- Externe Organisation(en)
- Université Paris Saclay, Consiglio Nazionale delle Ricerche, Quandela, Università degli Studi di Roma La Sapienza, Universidade Federal de São Carlos, Università degli studi di Pavia
- Journal
- npj Quantum Information
- Band
- 10
- Anzahl der Seiten
- 7
- ISSN
- 2056-6387
- DOI
- https://doi.org/10.1038/s41534-024-00830-z
- Publikationsdatum
- 05-2024
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103021 Optik, 103026 Quantenoptik
- ASJC Scopus Sachgebiete
- Computer Science (miscellaneous), Statistical and Nonlinear Physics, Computer Networks and Communications, Computational Theory and Mathematics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/d5c1c4eb-0187-4fdc-b1c1-9df267f97602