Die u:cris Detailansicht:

Hidden Quantum Memory

Autor(en)
Philip Taranto, Thomas J. Elliott, Simon Milz
Abstrakt

In classical physics, memoryless dynamics and Markovian statistics are one and the same. This is not true for quantum dynamics, first and foremost because quantum measurements are invasive. Going beyond measurement invasiveness, here we derive a novel distinction between classical and quantum processes, namely the possibility of hidden quantum memory. While Markovian statistics of classical processes can always be reproduced by a memoryless dynamical model, our main result shows that this is not true in quantum mechanics: We first provide an example of quantum non-Markovianity whose manifestation depends on whether or not a previous measurement is performed—an impossible phenomenon for memoryless dynamics; we then strengthen this result by demonstrating statistics that are Markovian independent of how they are probed, but are nonetheless still incompatible with memoryless quantum dynamics. Thus, we establish the existence of Markovian statistics gathered by probing a quantum process that nevertheless fundamentally require memory for their creation.

Organisation(en)
Forschungsverbund Quantum Aspects of Space Time, Quantenoptik, Quantennanophysik und Quanteninformation
Externe Organisation(en)
University of Tokyo, Technische Universität Wien, Österreichische Akademie der Wissenschaften (ÖAW), University of Manchester, University of Dublin
Journal
Quantum
Band
7
Anzahl der Seiten
20
ISSN
2521-327X
DOI
https://doi.org/10.22331/q-2023-04-27-991
Publikationsdatum
2023
Peer-reviewed
Ja
ÖFOS 2012
103025 Quantenmechanik
ASJC Scopus Sachgebiete
Atomic and Molecular Physics, and Optics, Physics and Astronomy (miscellaneous)
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/cc788a2a-1e75-4da5-9383-41c2626beb37