Die u:cris Detailansicht:

Enhanced growth rate of atmospheric particles from sulfuric acid

Autor(en)
D. Stolzenburg, M. Simon, A. Ranjithkumar, Andreas Kürten, K. Lehtipalo, H. Gordon, T. Nieminen, L. Pichelstorfer, X.-C. He, S. Brilke, M. Xiao, A. Amorim, R. Baalbaki, A. Baccarini, L. Beck, S. Bräkling, Lucía Caudillo Murillo, D. Chen, B. Chu, L. Dada, A. Dias, J. Dommen, J. Duplissy, I. El Haddad, H. Finkenzeller, L. Fischer, L. Gonzalez Carracedo, M. Heinritzi, C. Kim, T. K. Koenig, W. Kong, H. Lamkaddam, C. P. Lee, M. Leiminger, Z. Li, V. Makhmutov, H. E. Manninen, Guillaume Marie, R. Marten, Tatjana Müller, W. Nie, E. Partoll, T. Petäjä, J. Pfeifer, M. Philippov, M. P. Rissanen, B. Rörup, S. Schobesberger, S. Schuchmann, J. Shen, M. Sipilä, G. Steiner, Y. Stozhkov, C. Tauber, Y. J. Tham, A. Tomé, M. Vazquez-Pufleau, A. C. Wagner, M. Wang, Y. Wang, Stefan K. Weber, D. Wimmer, P. J. Wlasits, Y. Wu, Q. Ye, Marcel Zauner-Wieczorek, U. Baltensperger, K. S. Carslaw, J. Curtius, N. M. Donahue, R. C. Flagan, A. Hansel, M. Kulmala, R. Volkamer, J. Kirkby, P. M. Winkler, Sebastian Ehrhart, Henning Finkenzeller, Jos Lelieveld
Abstrakt

In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (<10 nm) from sulfuric acid remain poorly measured. Therefore, the effect of stabilizing bases, the contribution of ions and the impact of attractive forces on molecular collisions are under debate. Here, we present precise growth rate measurements of uncharged sulfuric acid particles from 1.8 to 10 nm, performed under atmospheric conditions in the CERN (European Organization for Nuclear Research) CLOUD chamber. Our results show that the evaporation of sulfuric acid particles above 2 nm is negligible, and growth proceeds kinetically even at low ammonia concentrations. The experimental growth rates exceed the hard-sphere kinetic limit for the condensation of sulfuric acid. We demonstrate that this results from van der Waals forces between the vapour molecules and particles and disentangle it from charge–dipole interactions. The magnitude of the enhancement depends on the assumed particle hydration and collision kinetics but is increasingly important at smaller sizes, resulting in a steep rise in the observed growth rates with decreasing size. Including the experimental results in a global model, we find that the enhanced growth rate of sulfuric acid particles increases the predicted particle number concentrations in the upper free troposphere by more than 50 %.

Organisation(en)
Aerosolphysik und Umweltphysik
Externe Organisation(en)
Leopold-Franzens-Universität Innsbruck, University of Helsinki, University of Colorado, Boulder, Finnish Meteorological Institute, Paul Scherrer Institute, Universidade de Lisboa, Carnegie Mellon University, University of Eastern Finland, California Institute of Technology (Caltech), Pusan National University (PNU), IONICON Analytik GmbH, Russian Academy of Sciences, Nanjing University, University of Tampere, Universidade da Beira Interior, Tofwerk AG, University of Leeds, Max-Planck-Institut für Chemie (Otto-Hahn-Institut), Johann Wolfgang Goethe-Universität Frankfurt am Main, European Organization for Nuclear Research (CERN)
Journal
Atmospheric Chemistry and Physics
Band
20
Seiten
7359–7372
Anzahl der Seiten
14
ISSN
1680-7316
DOI
https://doi.org/10.5194/acp-2019-755
Publikationsdatum
2019
Peer-reviewed
Ja
ÖFOS 2012
103037 Umweltphysik, 103039 Aerosolphysik
Schlagwörter
ASJC Scopus Sachgebiete
Atmospheric Science
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/cadbc8cc-04dc-4bb3-bae2-f1cbf1c5f1c5