Die u:cris Detailansicht:

Selections of bounded variation for roots of smooth polynomials

Autor(en)
Adam Parusinski, Armin Rainer
Abstrakt

We prove that the roots of a smooth monic polynomial with complex-valued coefficients defined on a bounded Lipschitz domain Ω in Rm admit a parameterization by functions of bounded variation uniformly with respect to the coefficients. This result is best possible in the sense that discontinuities of the roots are in general unavoidable due to monodromy. We show that the discontinuity set can be chosen to be a finite union of smooth hypersurfaces. On its complement the parameterization of the roots is of optimal Sobolev class W1,p for all 1≤p<nn−1, where n is the degree of the polynomial. All discontinuities are jump discontinuities. For all this we require the coefficients to be of class Ck−1,1(Ω¯¯¯¯), where k is a positive integer depending only on n and m. The order of differentiability k is not optimal. However, in the case of radicals, i.e., for the solutions of the equation Zr=f, where f is a complex-valued function and r∈R>0, we obtain optimal uniform bounds.

Organisation(en)
Institut für Mathematik
Externe Organisation(en)
Pädagogische Hochschule Niederösterreich, Université Côte d'Azur
Journal
Selecta Mathematica
Band
26
Anzahl der Seiten
40
ISSN
1022-1824
DOI
https://doi.org/10.1007/s00029-020-0538-z
Publikationsdatum
2020
Peer-reviewed
Ja
ÖFOS 2012
101002 Analysis
Schlagwörter
ASJC Scopus Sachgebiete
Allgemeine Physik und Astronomie, Allgemeine Mathematik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/b027c6f9-ffb3-4fcf-b2f0-579eeeae68e5