Die u:cris Detailansicht:

Layer-by-layer phase transformation in Ti<sub>3</sub>O<sub>5</sub> revealed by machine-learning molecular dynamics simulations

Autor(en)
Mingfeng Liu, Jiantao Wang, Junwei Hu, Peitao Liu, Haiyang Niu, Xuexi Yan, Jiangxu Li, Haile Yan, Bo Yang, Yan Sun, Chunlin Chen, Georg Kresse, Liang Zuo, Xing Qiu Chen
Abstrakt

Reconstructive phase transitions involving breaking and reconstruction of primary chemical bonds are ubiquitous and important for many technological applications. In contrast to displacive phase transitions, the dynamics of reconstructive phase transitions are usually slow due to the large energy barrier. Nevertheless, the reconstructive phase transformation from β- to λ-Ti3O5 exhibits an ultrafast and reversible behavior. Despite extensive studies, the underlying microscopic mechanism remains unclear. Here, we discover a kinetically favorable in-plane nucleated layer-by-layer transformation mechanism through metadynamics and large-scale molecular dynamics simulations. This is enabled by developing an efficient machine learning potential with near first-principles accuracy through an on-the-fly active learning method and an advanced sampling technique. Our results reveal that the β−λ phase transformation initiates with the formation of two-dimensional nuclei in the ab-plane and then proceeds layer-by-layer through a multistep barrier-lowering kinetic process via intermediate metastable phases. Our work not only provides important insight into the ultrafast and reversible nature of the β−λ transition, but also presents useful strategies and methods for tackling other complex structural phase transitions.

Organisation(en)
Computergestützte Materialphysik
Externe Organisation(en)
Chinese Academy of Sciences (CAS), University of Science and Technology of China (USTC), Northwestern Polytechnical University, Universität Nordostchinas
Journal
Nature Communications
Band
15
Anzahl der Seiten
10
ISSN
2041-1723
DOI
https://doi.org/10.1038/s41467-024-47422-1
Publikationsdatum
04-2024
Peer-reviewed
Ja
ÖFOS 2012
103018 Materialphysik, 102019 Machine Learning
ASJC Scopus Sachgebiete
Allgemeine Chemie, Allgemeine Biochemie, Genetik und Molekularbiologie, Allgemeine Physik und Astronomie
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/c62c5a01-2e81-4f31-89dc-b9ad71ee3db0