Die u:cris Detailansicht:

Spin-Bounded Correlations

Autor(en)
Albert Aloy, Thomas D. Galley, Caroline L. Jones, Stefan L. Ludescher, Markus P. Müller
Abstrakt

How can detector click probabilities respond to spatial rotations around a fixed axis, in any possible physical theory? Here, we give a thorough mathematical analysis of this question in terms of “rotation boxes”, which are analogous to the well-known notion of non-local boxes. We prove that quantum theory admits the most general rotational correlations for spins 0, 1/2, and 1, but we describe a metrological game where beyond-quantum resources of spin 3/2 outperform all quantum resources of the same spin. We prove a multitude of fundamental results about these correlations, including an exact convex characterization of the spin-1 correlations, a Tsirelson-type inequality for spins 3/2 and higher, and a proof that the general spin-J correlations provide an efficient outer SDP approximation to the quantum set. Furthermore, we review and consolidate earlier results that hint at a wealth of applications of this formalism: a theory-agnostic semi-device-independent randomness generator, an exact characterization of the quantum (2, 2, 2)-Bell correlations in terms of local symmetries, and the derivation of multipartite Bell witnesses. Our results illuminate the foundational question of how space constrains the structure of quantum theory, they build a bridge between semi-device-independent quantum information and spacetime physics, and they demonstrate interesting relations to topics such as entanglement witnesses, spectrahedra, and orbitopes.

Organisation(en)
Quantenoptik, Quantennanophysik und Quanteninformation
Externe Organisation(en)
Österreichische Akademie der Wissenschaften (ÖAW), Universität Wien, Perimeter Institute for Theoretical Physics
Journal
Communications in Mathematical Physics
Band
405
Anzahl der Seiten
88
ISSN
0010-3616
DOI
https://doi.org/10.1007/s00220-024-05123-2
Publikationsdatum
11-2024
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
ASJC Scopus Sachgebiete
Statistical and Nonlinear Physics, Mathematical Physics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/c4bf2687-1400-477d-a46d-09eb2a0d48d6