Die u:cris Detailansicht:
Integrability of Φ<sup>4</sup> matrix model as <i>N</i>-body harmonic oscillator system
- Autor(en)
- Harald Grosse, Akifumi Sako
- Abstrakt
We study a Hermitian matrix model with a kinetic term given by Tr(HΦ2), where H is a positive definite Hermitian matrix, similar as in the Kontsevich Matrix model, but with its potential Φ3 replaced by Φ4. We show that its partition function solves an integrable Schrödinger-type equation for a non-interacting N-body Harmonic oscillator system.
- Organisation(en)
- Forschungsplattform Internationales Erwin Schrödinger Institut für Mathematik und Physik, Mathematische Physik
- Externe Organisation(en)
- Tokyo University of Science
- Journal
- Letters in Mathematical Physics
- Band
- 114
- Anzahl der Seiten
- 19
- ISSN
- 0377-9017
- DOI
- https://doi.org/10.48550/arXiv.2308.11523
- Publikationsdatum
- 04-2024
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103019 Mathematische Physik, 103012 Hochenergiephysik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Statistical and Nonlinear Physics, Mathematical Physics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/b60b44c9-638d-46be-a87a-eb972ef716fc