Die u:cris Detailansicht:
On invertible 2-dimensional framed and <i>r</i>-spin topological field theories
- Autor(en)
- Lorant Szegedy
- Abstrakt
We classify invertible 2-dimensional framed and r-spin topological field theories by computing the homotopy groups and the k-invariant of the corresponding bordism categories. The zeroth homotopy group of a bordism category is the usual Thom bordism group, the first homotopy group can be identified with a Reinhart vector field bordism group, or the so called SKK group as observed by Ebert, Bökstedt–Svane and Kreck–Stolz– Teichner. We present the computation of SKK groups for stable tangential structures. Then we consider non-stable examples: the 2-dimensional framed and r-spin SKK groups and compute them explicitly using the combinatorial model of framed and r-spin surfaces of Novak, Runkel and the author.
- Organisation(en)
- Mathematische Physik
- Externe Organisation(en)
- Universität Wien
- Journal
- Homology, Homotopy and Applications
- Band
- 25
- Seiten
- 105-126
- Anzahl der Seiten
- 22
- ISSN
- 1532-0073
- DOI
- https://doi.org/10.4310/HHA.2023.v25.n1.a6
- Publikationsdatum
- 2023
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103019 Mathematische Physik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Mathematics (miscellaneous)
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/acadd2cf-cc53-414a-b241-bcc380e7e71a