Die u:cris Detailansicht:

On invertible 2-dimensional framed and <i>r</i>-spin topological field theories

Autor(en)
Lorant Szegedy
Abstrakt

We classify invertible 2-dimensional framed and r-spin topological field theories by computing the homotopy groups and the k-invariant of the corresponding bordism categories. The zeroth homotopy group of a bordism category is the usual Thom bordism group, the first homotopy group can be identified with a Reinhart vector field bordism group, or the so called SKK group as observed by Ebert, Bökstedt–Svane and Kreck–Stolz– Teichner. We present the computation of SKK groups for stable tangential structures. Then we consider non-stable examples: the 2-dimensional framed and r-spin SKK groups and compute them explicitly using the combinatorial model of framed and r-spin surfaces of Novak, Runkel and the author.

Organisation(en)
Mathematische Physik
Externe Organisation(en)
Universität Wien
Journal
Homology, Homotopy and Applications
Band
25
Seiten
105-126
Anzahl der Seiten
22
ISSN
1532-0073
DOI
https://doi.org/10.4310/HHA.2023.v25.n1.a6
Publikationsdatum
2023
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
Schlagwörter
ASJC Scopus Sachgebiete
Mathematics (miscellaneous)
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/acadd2cf-cc53-414a-b241-bcc380e7e71a