Die u:cris Detailansicht:
Truncated Affine Rozansky–Witten Models as Extended Defect TQFTs
- Autor(en)
- Ilka Brunner, Nils Carqueville, Pantelis Fragkos, Daniel Roggenkamp
- Abstrakt
We apply the cobordism hypothesis with singularities to the case of affine Rozansky–Witten models, providing a construction of extended TQFTs that includes all line and surface defects. On a technical level, this amounts to proving that the associated homotopy 2-category is pivotal, and to systematically employing its 3-dimensional graphical calculus. This in particular allows us to explicitly calculate state spaces for surfaces with arbitrary defect networks. As specific examples we discuss symmetry defects which can be used to model non-trivial background gauge fields, as well as boundary conditions.
- Organisation(en)
- Mathematische Physik
- Externe Organisation(en)
- Ludwig-Maximilians-Universität München, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Universität Leipzig
- Journal
- Communications in Mathematical Physics
- Band
- 406
- Anzahl der Seiten
- 74
- ISSN
- 1432-0916
- DOI
- https://doi.org/10.48550/arXiv.2307.06284
- Publikationsdatum
- 01-2025
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103019 Mathematische Physik, 103012 Hochenergiephysik
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/aac935db-2383-4255-a849-2c5c1ca4df4a