Die u:cris Detailansicht:

Truncated Affine Rozansky–Witten Models as Extended Defect TQFTs

Autor(en)
Ilka Brunner, Nils Carqueville, Pantelis Fragkos, Daniel Roggenkamp
Abstrakt

We apply the cobordism hypothesis with singularities to the case of affine Rozansky–Witten models, providing a construction of extended TQFTs that includes all line and surface defects. On a technical level, this amounts to proving that the associated homotopy 2-category is pivotal, and to systematically employing its 3-dimensional graphical calculus. This in particular allows us to explicitly calculate state spaces for surfaces with arbitrary defect networks. As specific examples we discuss symmetry defects which can be used to model non-trivial background gauge fields, as well as boundary conditions.

Organisation(en)
Mathematische Physik
Externe Organisation(en)
Ludwig-Maximilians-Universität München, Max-Planck-Institut für Mathematik in den Naturwissenschaften, Universität Leipzig
Journal
Communications in Mathematical Physics
Band
406
Anzahl der Seiten
74
ISSN
1432-0916
DOI
https://doi.org/10.48550/arXiv.2307.06284
Publikationsdatum
01-2025
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik, 103012 Hochenergiephysik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/aac935db-2383-4255-a849-2c5c1ca4df4a