Die u:cris Detailansicht:

The extrapolated explicit midpoint scheme for variable order and step size controlled integration of the Landau-Lifschitz-Gilbert equation

Autor(en)
Lukas Exl, Norbert Mauser, Thomas Schrefl, Dieter Süss
Abstrakt

A practical and efficient scheme for the higher order integration of the Landau-Lifschitz-Gilbert (LLG) equation is presented. The method is based on extrapolation of the two-step explicit midpoint rule and incorporates adaptive time step and order selection. We make use of a piecewise time-linear stray field approximation to reduce the necessary work per time step. The approximation to the interpolated operator is embedded into the extrapolation process to keep in step with the hierarchic order structure of the scheme. We verify the approach by means of numerical experiments on a standardized NIST problem and compare with a higher order embedded Runge-Kutta formula. The efficiency of the presented approach increases when the stray field computation takes a larger portion of the costs for the effective field evaluation.

Organisation(en)
Institut für Mathematik, Physik Funktioneller Materialien
Externe Organisation(en)
Universität für Weiterbildung Krems
Journal
Journal of Computational Physics
Band
346
Seiten
14-24
Anzahl der Seiten
11
ISSN
0021-9991
DOI
https://doi.org/10.1016/j.jcp.2017.06.005
Publikationsdatum
10-2017
Peer-reviewed
Ja
ÖFOS 2012
101014 Numerische Mathematik, 103017 Magnetismus
Schlagwörter
ASJC Scopus Sachgebiete
Computational Mathematics, Allgemeine Physik und Astronomie, Applied Mathematics, Numerical Analysis, Computer Science Applications, Modelling and Simulation, Physics and Astronomy (miscellaneous)
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/9d9cfb2a-4108-4a1f-b16d-5edfcf9351ab