Die u:cris Detailansicht:
Commutative post-Lie algebra structures on Kac–Moody algebras
- Autor(en)
- Dietrich Burde, Pasha Zusmanovich
- Abstrakt
We determine commutative post-Lie algebra structures on some infinite-dimensional Lie algebras. We show that all commutative post-Lie algebra structures on loop algebras are trivial. This extends the results for finite-dimensional perfect Lie algebras. Furthermore, we show that all commutative post-Lie algebra structures on affine Kac-Moody Lie algebras are "almost trivial".
- Organisation(en)
- Institut für Mathematik
- Externe Organisation(en)
- University of Ostrava
- Journal
- Communications in Algebra
- Band
- 47
- Seiten
- 5218-5226
- Anzahl der Seiten
- 9
- ISSN
- 0092-7872
- DOI
- https://doi.org/10.1080/00927872.2019.1612426
- Publikationsdatum
- 2019
- Peer-reviewed
- Ja
- ÖFOS 2012
- 101001 Algebra
- Schlagwörter
- ASJC Scopus Sachgebiete
- Algebra and Number Theory
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/051720a3-678b-406b-a19e-3bfb65690ef4