Die u:cris Detailansicht:

Commutative post-Lie algebra structures on Kac–Moody algebras

Autor(en)
Dietrich Burde, Pasha Zusmanovich
Abstrakt

We determine commutative post-Lie algebra structures on some infinite-dimensional Lie algebras. We show that all commutative post-Lie algebra structures on loop algebras are trivial. This extends the results for finite-dimensional perfect Lie algebras. Furthermore, we show that all commutative post-Lie algebra structures on affine Kac-Moody Lie algebras are "almost trivial".

Organisation(en)
Institut für Mathematik
Externe Organisation(en)
University of Ostrava
Journal
Communications in Algebra
Band
47
Seiten
5218-5226
Anzahl der Seiten
9
ISSN
0092-7872
DOI
https://doi.org/10.1080/00927872.2019.1612426
Publikationsdatum
2019
Peer-reviewed
Ja
ÖFOS 2012
101001 Algebra
Schlagwörter
ASJC Scopus Sachgebiete
Algebra and Number Theory
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/051720a3-678b-406b-a19e-3bfb65690ef4