Die u:cris Detailansicht:
High-fidelity transmission of entanglement over a high-loss free-space channel
- Autor(en)
- Alessandro Fedrizzi, Rupert Ursin, Thomas Herbst, Matteo Nespoli, Robert Prevedel, Thomas Scheidl, Felix Tiefenbacher, Thomas Jennewein, Anton Zeilinger
- Abstrakt
Quantum entanglement enables tasks not possible in classical physics. Many quantum communication protocols1 require the distribution of entangled states between distant parties. Here, we experimentally demonstrate the successful transmission of an entangled photon pair over a 144 km free-space link. The received entangled states have excellent, noise-limited fidelity, even though they are exposed to extreme attenuation dominated by turbulent atmospheric effects. The total channel loss of 64 dB corresponds to the estimated attenuation regime for a two-photon satellite communication scenario. We confirm that the received two-photon states are still highly entangled by violating the Clauser–Horne–Shimony–Holt inequality by more than five standard deviations. From a fundamental point of view, our results show that the photons are subject to virtually no decoherence during their 0.5-ms-long flight through air, which is encouraging for future worldwide quantum communication scenarios.
- Organisation(en)
- Quantenoptik, Quantennanophysik und Quanteninformation
- Externe Organisation(en)
- Österreichische Akademie der Wissenschaften (ÖAW)
- Journal
- Nature Physics
- Band
- 5
- Seiten
- 389-392
- Anzahl der Seiten
- 4
- ISSN
- 1745-2473
- DOI
- https://doi.org/10.1038/nphys1255
- Publikationsdatum
- 2009
- Peer-reviewed
- Ja
- ÖFOS 2012
- 1030 Physik, Astronomie
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/9a8ec6f7-177d-48cb-b463-7090b9ba1a1c