Die u:cris Detailansicht:

A Laplacian to Compute Intersection Numbers on M¯<sub>g,n </sub>and Correlation Functions in NCQFT

Autor(en)
Alexander Hock, Harald Grosse, Raimar Wulkenhaar
Abstrakt

Let Fg(t) be the generating function of intersection numbers of ψ-classes on the moduli spaces (Formula presented.) of stable complex curves of genus g. As by-product of a complete solution of all non-planar correlation functions of the renormalised Φ 3-matrical QFT model, we explicitly construct a Laplacian Δ t on a space of formal parameters ti which satisfies exp (∑ g≥2N2-2gFg(t)) = exp ((- Δ t+ F2(t)) / N2) 1 as formal power series in 1 / N2. The result is achieved via Dyson-Schwinger equations from noncommutative quantum field theory combined with residue techniques from topological recursion. The genus-g correlation functions of the Φ 3-matricial QFT model are obtained by repeated application of another differential operator to Fg(t) and taking for ti the renormalised moments of a measure constructed from the covariance of the model.

Organisation(en)
Mathematische Physik
Externe Organisation(en)
University of Oxford, Universität Münster
Journal
Communications in Mathematical Physics
Band
399
Seiten
481–517
Anzahl der Seiten
37
ISSN
0010-3616
DOI
https://doi.org/10.1007/s00220-022-04557-w
Publikationsdatum
01-2023
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
ASJC Scopus Sachgebiete
Statistical and Nonlinear Physics, Mathematical Physics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/9975746d-e667-4b2a-bdcc-813733c33a5e