Die u:cris Detailansicht:
A Laplacian to Compute Intersection Numbers on M¯<sub>g,n </sub>and Correlation Functions in NCQFT
- Autor(en)
- Alexander Hock, Harald Grosse, Raimar Wulkenhaar
- Abstrakt
Let Fg(t) be the generating function of intersection numbers of ψ-classes on the moduli spaces (Formula presented.) of stable complex curves of genus g. As by-product of a complete solution of all non-planar correlation functions of the renormalised Φ 3-matrical QFT model, we explicitly construct a Laplacian Δ t on a space of formal parameters ti which satisfies exp (∑ g≥2N2-2gFg(t)) = exp ((- Δ t+ F2(t)) / N2) 1 as formal power series in 1 / N2. The result is achieved via Dyson-Schwinger equations from noncommutative quantum field theory combined with residue techniques from topological recursion. The genus-g correlation functions of the Φ 3-matricial QFT model are obtained by repeated application of another differential operator to Fg(t) and taking for ti the renormalised moments of a measure constructed from the covariance of the model.
- Organisation(en)
- Mathematische Physik
- Externe Organisation(en)
- University of Oxford, Universität Münster
- Journal
- Communications in Mathematical Physics
- Band
- 399
- Seiten
- 481–517
- Anzahl der Seiten
- 37
- ISSN
- 0010-3616
- DOI
- https://doi.org/10.1007/s00220-022-04557-w
- Publikationsdatum
- 01-2023
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103019 Mathematische Physik
- ASJC Scopus Sachgebiete
- Statistical and Nonlinear Physics, Mathematical Physics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/9975746d-e667-4b2a-bdcc-813733c33a5e