Die u:cris Detailansicht:

Efficient gating of epitaxial boron nitride monolayers by substrate functionalization

Autor(en)
A. Fedorov, C. S. Praveen, N. I. Verbitskiy, D. Haberer, D. Usachov, D. V. Vyalikh, A. Nefedov, C. Wöll, L. Petaccia, S. Piccinin, H. Sachdev, M. Knupfer, B. Büchner, S. Fabris, Alexander Grüneis
Abstrakt

Insulating hexagonal boron nitride monolayers (hBN) are best known for being resistant to chemical functionalization. This property makes hBN an excellent substrate for graphene heterostructures, but limits its application as an active element in nanoelectronics where tunable electronic properties are needed. Moreover, the two-dimensional-materials' community wishes to learn more about the adsorption and intercalation characteristics of alkali metals on hBN, which have direct relevance to several electrochemistry experiments that are envisioned with layered materials. Here we provide results on ionic functionalization of hBN/metal interfaces with K and Li dopants. By combining angle-resolved photoemission spectroscopy (ARPES), x-ray photoelectron spectroscopy, and density functional theory calculations, we show that the metallic substrate readily ionizes the alkali dopants and exposes hBN to large electric fields and band-energy shifts. In particular, if hBN is in between the negatively charged substrate and the positive alkali ion, this allows us to directly study, using ARPES, the effects of large electric fields on the electron energy bands of hBN.

Organisation(en)
Elektronische Materialeigenschaften
Externe Organisation(en)
Saint Petersburg State University, Scuola Internazionale Superiore di Studi Avanzati, Universität zu Köln, Lomonosov Moscow State University (MSU), University of California, Berkeley, Technische Universität Dresden, Karlsruher Institut für Technologie, Elettra Sincrotrone Trieste, Max-Planck-Institut für Polymerforschung, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden
Journal
Physical Review B
Band
92
Anzahl der Seiten
7
ISSN
1098-0121
DOI
https://doi.org/10.1103/PhysRevB.92.125440
Publikationsdatum
09-2015
Peer-reviewed
Ja
ÖFOS 2012
103018 Materialphysik
Schlagwörter
ASJC Scopus Sachgebiete
Electronic, Optical and Magnetic Materials, Condensed Matter Physics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/960334bd-1731-46a1-8fd8-a16e75cf41d1