Die u:cris Detailansicht:
Molecular understanding of sulphuric acid-amine particle nucleation in the atmosphere
- Autor(en)
- Joao Almeida, Siegfried Schobesberger, Andreas Kuerten, Ismael K. Ortega, Oona Kupiainen-Maatta, Arnaud P. Praplan, Alexey Adamov, Antonio Amorim, Federico Bianchi, Martin Breitenlechner, Andre David, Josef Dommen, Neil M. Donahue, Andrew Downard, Eimear Dunne, Jonathan Duplissy, Sebastian Ehrhart, Richard C. Flagan, Alessandro Franchin, Roberto Guida, Jani Hakala, Armin Hansel, Martin Heinritzi, Henning Henschel, Tuija Jokinen, Heikki Junninen, Maija Kajos, Juha Kangasluoma, Helmi Keskinen, Agnieszka Kupc, Theo Kurten, Alexander N. Kvashin, Ari Laaksonen, Katrianne Lehtipalo, Markus Leiminger, Johannes Leppa, Ville Loukonen, Vladimir Makhmutov, Serge Mathot, Matthew J. McGrath, Tuomo Nieminen, Tinja Olenius, Antti Onnela, Tuukka Petaja, Francesco Riccobono, Ilona Riipinen, Matti Rissanen, Linda Rondo, Taina Ruuskanen, Filipe D. Santos, Nina Sarnela, Simon Schallhart, Ralf Schnitzhofer, John H. Seinfeld, Mario Simon, Mikko Sipila, Yuri Stozhkov, Frank Stratmann, Antonio Tome, Jasmin Troestl, Georgios Tsagkogeorgas, Petri Vaattovaara, Yrjo Viisanen, Annele Virtanen, Aron Vrtala, Paul E. Wagner, Ernest Weingartner, Heike Wex, Christina Williamson, Daniela Wimmer, Penglin Ye, Taina Yli-Juuti, Kenneth S. Carslaw, Markku Kulmala, Joachim Curtius, Urs Baltensperger, Douglas R. Worsnop, Hanna Vehkamaki, Jasper Kirkby
- Abstrakt
Nucleation of aerosol particles from trace atmospheric vapours is
thought to provide up to half of global cloud condensation nuclei1.
Aerosols can cause a net cooling of climate by scattering sunlight and
by leading to smaller but more numerous cloud droplets, which makes
clouds brighter and extends their lifetimes2.
Atmospheric aerosols derived from human activities are thought to have
compensated for a large fraction of the warming caused by greenhouse
gases2.
However, despite its importance for climate, atmospheric nucleation is
poorly understood. Recently, it has been shown that sulphuric acid and
ammonia cannot explain particle formation rates observed in the lower
atmosphere3. It is thought that amines may enhance nucleation4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
but until now there has been no direct evidence for amine ternary
nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics
Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine
above three parts per trillion by volume can enhance particle formation
rates more than 1,000-fold compared with ammonia, sufficient to account
for the particle formation rates observed in the atmosphere. Molecular
analysis of the clusters reveals that the faster nucleation is explained
by a base-stabilization mechanism involving acid–amine pairs, which
strongly decrease evaporation. The ion-induced contribution is generally
small, reflecting the high stability of sulphuric acid–dimethylamine
clusters and indicating that galactic cosmic rays exert only a small
influence on their formation, except at low overall formation rates. Our
experimental measurements are well reproduced by a dynamical model
based on quantum chemical calculations of binding energies of molecular
clusters, without any fitted parameters. These results show that, in
regions of the atmosphere near amine sources, both amines and sulphur
dioxide should be considered when assessing the impact of anthropogenic
activities on particle formation.
- Organisation(en)
- Aerosolphysik und Umweltphysik
- Externe Organisation(en)
- European Organization for Nuclear Research (CERN), Universität Zürich (UZH), Universidade Técnica de Lisboa, Universidade da Beira Interior, IONICON Analytik GmbH, Leopold-Franzens-Universität Innsbruck, Carnegie Mellon University, California Institute of Technology (Caltech), University of Leeds, University of Eastern Finland, University of Helsinki, Finnish Meteorological Institute, Kyoto University, Stockholm University, Leibniz-Institut für Troposphärenforschung, Aerodyne Res Inc, Johann Wolfgang Goethe-Universität Frankfurt am Main, Russian Academy of Sciences
- Journal
- Nature
- Band
- 502
- Seiten
- 359-363
- Anzahl der Seiten
- 11
- ISSN
- 0028-0836
- DOI
- https://doi.org/10.1038/nature12663
- Publikationsdatum
- 10-2013
- Peer-reviewed
- Ja
- ÖFOS 2012
- 105204 Klimatologie, 105206 Meteorologie, 105904 Umweltforschung
- Schlagwörter
- Sustainable Development Goals
- SDG 13 – Maßnahmen zum Klimaschutz
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/8ff5f4e1-582b-4694-82f1-896d0b511b36