Die u:cris Detailansicht:
Inextendibility of spacetimes and Lorentzian length spaces
- Autor(en)
- James D. E. Grant, Michael Kunzinger, Clemens Sämann
- Abstrakt
We study the low-regularity (in-)extendibility of spacetimes within the synthetic-geometric framework of Lorentzian length spaces developed in Kunzinger and Sämann (Ann Glob Anal Geom 54(3):399–447, 2018). To this end, we introduce appropriate notions of geodesics and timelike geodesic completeness and prove a general inextendibility result. Our results shed new light on recent analytic work in this direction and, for the first time, relate low-regularity inextendibility to (synthetic) curvature blow-up.
- Organisation(en)
- Institut für Mathematik
- Journal
- Annals of Global Analysis and Geometry
- Band
- 55
- Seiten
- 133-147
- Anzahl der Seiten
- 15
- ISSN
- 0232-704X
- DOI
- https://doi.org/10.1007/s10455-018-9637-x
- Publikationsdatum
- 02-2019
- Peer-reviewed
- Ja
- ÖFOS 2012
- 101006 Differentialgeometrie, 103028 Relativitätstheorie
- Schlagwörter
- ASJC Scopus Sachgebiete
- Analysis, Geometry and Topology, Political Science and International Relations
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/7cddcc07-c8e1-49c7-81b7-7fcabefa78da