Die u:cris Detailansicht:
Divalent Multilinking Bonds Control Growth and Morphology of Nanopolymers
- Autor(en)
- Yan Xiong, Zhiwei Lin, Deniz Mostarac, Brian Minevich, Qiuyuan Peng, Guolong Zhu, Pedro A. Sánchez, Sofia Kantorovich, Yonggang Ke, Oleg Gang
- Abstrakt
Assembly of nanoscale objects into linear architectures resembling molecular polymers is a basic organization resulting from divalent interactions. Such linear architectures occur for particles with two binding patches on opposite sides, known as Janus particles. However, unlike molecular systems where valence bonds can be envisioned as pointlike interactions nanoscale patches are often realized through multiple molecular linkages. The relationship between the characteristics of these linkages, the resulting interpatch connectivity, and assembly morphology is not well-explored. Here, we investigate assembly behavior of model divalent nanomonomers, DNA nanocuboid with tailorable multilinking bonds. Our study reveals that the characteristics of individual molecular linkages and their collective properties have a profound effect on nanomonomer reactivity and resulting morphologies. Beyond linear nanopolymers, a common signature of divalent nanomonomers, we observe an effective valence increase as linkages lengthened, leading to the nanopolymer bundling. The experimental findings are rationalized by molecular dynamics simulations.
- Organisation(en)
- Computergestützte Physik und Physik der Weichen Materie, Forschungsplattform MMM Mathematics-Magnetism-Materials
- Externe Organisation(en)
- Columbia University in the City of New York, Ural Federal University, Georgia Institute of Technology, Emory University, Brookhaven National Laboratory
- Journal
- Nano Letters
- Band
- 21
- Seiten
- 10547-10554
- Anzahl der Seiten
- 8
- ISSN
- 1530-6984
- DOI
- https://doi.org/10.1021/acs.nanolett.1c03009
- Publikationsdatum
- 10-2021
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103043 Computational Physics, 103023 Polymerphysik, 210004 Nanomaterialien
- Schlagwörter
- ASJC Scopus Sachgebiete
- Condensed Matter Physics, Mechanical Engineering, Bioengineering, Allgemeine Chemie, Allgemeine Materialwissenschaften
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/8607c3ab-f301-4d55-b3cf-edc23215419d