Die u:cris Detailansicht:
Solutions of quasi-linear wave equations polyhomogeneous at null infinity in high dimensions
- Autor(en)
- Piotr T. Chrusciel, Roger Tagne Wafo
- Abstrakt
We prove propagation of weighted Sobolev regularity for solutions of the hyperboloidal Cauchy problem for a class of quasi-linear symmetric hyperbolic systems, under structure conditions compatible with the Einstein-Maxwell equations in space-time dimensions n + 1 >= 7. Similarly we prove propagation of polyhomogeneity in dimensions n + 1 >= 9. As a byproduct we obtain, in those last dimensions, polyhomogeneity at null infinity of small data solutions of vacuum Einstein, or Einstein-Maxwell equations evolving out of initial data which are stationary outside of a ball.
- Organisation(en)
- Gravitationsphysik
- Externe Organisation(en)
- University of Douala
- Journal
- Journal of Hyperbolic Differential Equations
- Band
- 8
- Seiten
- 269-346
- Anzahl der Seiten
- 78
- ISSN
- 0219-8916
- DOI
- https://doi.org/10.1142/S0219891611002445
- Publikationsdatum
- 2011
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103036 Theoretische Physik, 103028 Relativitätstheorie, 103019 Mathematische Physik
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/819f9c5c-e07a-4831-84e2-e8d959068085