Die u:cris Detailansicht:

Solutions of quasi-linear wave equations polyhomogeneous at null infinity in high dimensions

Autor(en)
Piotr T. Chrusciel, Roger Tagne Wafo
Abstrakt

We prove propagation of weighted Sobolev regularity for solutions of the hyperboloidal Cauchy problem for a class of quasi-linear symmetric hyperbolic systems, under structure conditions compatible with the Einstein-Maxwell equations in space-time dimensions n + 1 >= 7. Similarly we prove propagation of polyhomogeneity in dimensions n + 1 >= 9. As a byproduct we obtain, in those last dimensions, polyhomogeneity at null infinity of small data solutions of vacuum Einstein, or Einstein-Maxwell equations evolving out of initial data which are stationary outside of a ball.

Organisation(en)
Gravitationsphysik
Externe Organisation(en)
University of Douala
Journal
Journal of Hyperbolic Differential Equations
Band
8
Seiten
269-346
Anzahl der Seiten
78
ISSN
0219-8916
DOI
https://doi.org/10.1142/S0219891611002445
Publikationsdatum
2011
Peer-reviewed
Ja
ÖFOS 2012
103036 Theoretische Physik, 103028 Relativitätstheorie, 103019 Mathematische Physik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/819f9c5c-e07a-4831-84e2-e8d959068085