Die u:cris Detailansicht:

Real time evolution at finite temperatures with operator space matrix product states

Autor(en)
Iztok Pizorn, Viktor Eisler, Sabine Andergassen, Matthias Troyer
Abstrakt

We propose a method to simulate the real time evolution of one-dimensional quantum many-body systems at finite temperature by expressing both the density matrices and the observables as matrix product states. This allows the calculation of expectation values and correlation functions as scalar products in operator space. The simulations of density matrices in inverse temperature and the local operators in the Heisenberg picture are independent and result in a grid of expectation values for all intermediate temperatures and times. Simulations can be performed using real arithmetics with only polynomial growth of computational resources in inverse temperature and time for integrable systems. The method is illustrated for the XXZ model and the single impurity Anderson model.

Organisation(en)
Quantenoptik, Quantennanophysik und Quanteninformation
Externe Organisation(en)
Eidgenössische Technische Hochschule Zürich
Journal
New Journal of Physics
Band
16
Anzahl der Seiten
10
ISSN
1367-2630
DOI
https://doi.org/10.1088/1367-2630/16/7/073007
Publikationsdatum
07-2014
Peer-reviewed
Ja
ÖFOS 2012
103025 Quantenmechanik
Schlagwörter
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/72fd19b2-4f15-49e4-bac1-c8ba355309a7