Die u:cris Detailansicht:
YIG/CoFeB bilayer magnonic diode
- Autor(en)
- Noura Zenbaa, Khrystyna Levchenko, Jaganandha Panda, Kristyna Davidková, Moritz Ruhwedel, Sebastian Knauer, Morris Lindner, Carsten Dubs, Qi Wang, Michal Urbánek, Philipp Pirro, Andrii Chumak
- Abstrakt
We demonstrate a magnonic diode based on a bilayer structure of Yttrium Iron Garnet (YIG) and Cobalt Iron Boron (CoFeB). The bilayer exhibits pronounced non-reciprocal spin-wave propagation, enabled by dipolar coupling and the magnetic properties of the two layers. The YIG layer provides low damping and efficient spin-wave propagation, while the CoFeB layer introduces strong magnetic anisotropy, critical for achieving diode functionality. Experimental results, supported by numerical simulations, show unidirectional propagation of Magnetostatic Surface Spin Waves (MSSW), significantly suppressing backscattered waves. This behavior was confirmed through wavevector-resolved and micro-focused Brillouin Light Scattering measurements and is supported by numerical simulations. The proposed YIG/SiO2/CoFeB bilayer magnonic diode demonstrates the feasibility of leveraging non-reciprocal spin-wave dynamics for functional magnonic devices, paving the way for energy-efficient, wave-based signal processing technologies.
- Organisation(en)
- Nanomagnetismus und Magnonik
- Externe Organisation(en)
- Brno University of Technology, Deutsches Zentrum für Luft- und Raumfahrt e.V. (DLR), Rheinisch-Westfälische Technische Hochschule Aachen, Innovent e.V. Technologieentwicklung Jena, Huazhong University of Science and Technology, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
- DOI
- https://doi.org/10.48550/arXiv.2412.08383
- Publikationsdatum
- 12-2024
- ÖFOS 2012
- 103017 Magnetismus
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/6c669102-8c44-4807-9a10-78e002f4564a