Die u:cris Detailansicht:

Phase transformations and mechanical properties of biocompatible Ti–16.1Nb processed by severe plastic deformation

Autor(en)
Ajit Panigrahi, Matthias Bönisch, Thomas Waitz, Erhard Schafler, Mariana Calin, Jürgen Eckert, Werner Skrotzki, Michael Zehetbauer
Abstrakt

A coarse grained biocompatible Ti–16.1Nb (wt.%) alloy was used to study

the impact of severe plastic deformation on microstructural changes,

phase transformations, and mechanical properties. The starting material,

showing a rather low value of Young’s modulus (66 GPa), contained

orthorhombic α″ martensite. Hydrostatic pressure of 4 GPa solely yields a partial transformation to the ω-phase; increasing the pressure to 8 GPa increases the volume fraction of the ω-phase

and causes a concomitant increase of Young’s modulus. By processing

samples through high pressure torsion at room temperature, i.e. applying

both hydrostatic pressure and shear deformation, a nanocrystalline

structure was obtained. The samples almost exclusively contained the ω-phase and showed rather high values of Young’s modulus (up to 130 GPa) and hardness (up to 4.0 GPa). The ω-phase

formed during high pressure torsion revealed stability upon unloading.

However, upon heating to about 500 °C the ω-phase decomposes into a

phase mixture of hexagonal α and body centred cubic β phases which is still ultra-fine. Cold rolling and folding achieves a microstructure consisting of ω, α/α′ and α

phases. Concomitant decrease of grain size and increase of defect

density yield a hardness (3.3 GPa) which is smaller than that of high

pressure torsion but a Young’s modulus of about 100 GPa being closer to

that of the initial material.

Organisation(en)
Physik Nanostrukturierter Materialien
Externe Organisation(en)
Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden, Technische Universität Dresden
Journal
Journal of Alloys and Compounds
Band
628
Seiten
434–441
Anzahl der Seiten
8
ISSN
0925-8388
DOI
https://doi.org/10.1016/j.jallcom.2014.12.159
Publikationsdatum
12-2014
Peer-reviewed
Ja
ÖFOS 2012
103018 Materialphysik, 210004 Nanomaterialien
Schlagwörter
ASJC Scopus Sachgebiete
Mechanics of Materials, Mechanical Engineering, Metals and Alloys, Materials Chemistry
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/6bef1cd9-6909-441e-b96b-b6ce36d137d0