Die u:cris Detailansicht:

Advances in Magnetics Roadmap on Spin-Wave Computing

Autor(en)
A. V. Chumak, P. Kabos, M. Wu, C. Abert, C. Adelmann, A. O. Adeyeye, J. Åkerman, F. G. Aliev, A. Anane, A. Awad, C. H. Back, A. Barman, G. E. W. Bauer, M. Becherer, E. N. Beginin, V. A. S. V. Bittencourt, Y. M. Blanter, P. Bortolotti, I. Boventer, D. A. Bozhko, S. A. Bunyaev, J. J. Carmiggelt, R. R. Cheenikundil, F. Ciubotaru, S. Cotofana, G. Csaba, O. V. Dobrovolskiy, C. Dubs, M. Elyasi, K. G. Fripp, H. Fulara, I. A. Golovchanskiy, C. Gonzalez-Ballestero, P. Graczyk, D. Grundler, P. Gruszecki, G. Gubbiotti, K. Guslienko, A. Haldar, S. Hamdioui, R. Hertel, B. Hillebrands, T. Hioki, A. Houshang, C.-M. Hu, H. Huebl, M. Huth, E. Iacocca, M. B. Jungfleisch, G. N. Kakazei, A. Khitun, R. Khymyn, T. Kikkawa, M. Kläui, O. Klein, J. W. Kłos, S. Knauer, S. Koraltan, M. Kostylev, M. Krawczyk, I. N. Krivorotov, V. V. Kruglyak, D. Lachance-Quirion, S. Ladak, R. Lebrun, Y. Li, M. Lindner, R. Macêdo, S. Mayr, G. A. Melkov, S. Mieszczak, Y. Nakamura, H. T. Nembach, A. A. Nikitin, S. A. Nikitov, V. Novosad, J. A. Otálora, Y. Otani, A. Papp, B. Pigeau, P. Pirro, W. Porod, F. Porrati, H. Qin, B. Rana, T. Reimann, F. Riente, O. Romero-Isart, A. Ross, A. V. Sadovnikov, A. R. Safin, E. Saitoh, G. Schmidt, H. Schultheiss, K. Schultheiss, A. A. Serga, S. Sharma, J. M. Shaw, D. Suess, O. Surzhenko, K. Szulc, T. Taniguchi, M. Urbánek, K. Usami, A. B. Ustinov, T. van der Sar, S. van Dijken, V. I. Vasyuchka, R. Verba, S. Viola Kusminskiy, Q. Wang, M. Weides, M. Weiler, S. Wintz, S. P. Wolski, X. Zhang
Abstrakt

Magnonics addresses the physical properties of spin waves and utilizes them for data processing. Scalability down to atomic dimensions, operation in the GHz-to-THz frequency range, utilization of nonlinear and nonreciprocal phenomena, and compatibility with CMOS are just a few of many advantages offered by magnons. Although magnonics is still primarily positioned in the academic domain, the scientific and technological challenges of the field are being extensively investigated, and many proof-of-concept prototypes have already been realized in laboratories. This roadmap is a product of the collective work of many authors that covers versatile spin-wave computing approaches, conceptual building blocks, and underlying physical phenomena. In particular, the roadmap discusses the computation operations with Boolean digital data, unconventional approaches like neuromorphic computing, and the progress towards magnon-based quantum computing. The article is organized as a collection of sub-sections grouped into seven large thematic sections. Each sub-section is prepared by one or a group of authors and concludes with a brief description of current challenges and the outlook of further development for each research direction.

Organisation(en)
Nanomagnetismus und Magnonik, Forschungsplattform MMM Mathematics-Magnetism-Materials, Physik Funktioneller Materialien
Externe Organisation(en)
U.S. Department of Commerce, Colorado State University, Interuniversity Microelectronics Centre, Durham University, University of Gothenburg, Universidad Autónoma de Madrid, Unité Mixte de Physique CNRS/Thales, Technische Universität München, S.N. Bose National Centre for Basic Sciences, Tohoku University, University of Groningen, Saratov State University, Max-Planck-Institut für die Physik des Lichts, Delft University of Technology, University of Colorado, Colorado Springs, Universidade do Porto, Université de Strasbourg, Pázmány Péter Catholic University, Innovent e.V. Technologieentwicklung Jena, University of Exeter, Indian Institute of Technology Roorkee, National Research University, Leopold-Franzens-Universität Innsbruck, Österreichische Akademie der Wissenschaften (ÖAW), Polish Academy of Sciences (PAS), École polytechnique fédérale de Lausanne, Adam Mickiewicz University, Università degli Studi di Perugia, University of the Basque Country, Indian Institute of Technology Hyderabad, Technische Universität Kaiserslautern, University of Manitoba, Bayerische Akademie der Wissenschaften, Johann Wolfgang Goethe-Universität Frankfurt am Main, University of Delaware, University of California, Riverside, University of Tokyo, Johannes Gutenberg-Universität Mainz, Université Grenoble-Alpes, University of Western Australia, University of California, Irvine, Nord Quantique, Cardiff University, Argonne National Laboratory, University of Glasgow, Eidgenössische Technische Hochschule Zürich, Taras Shevchenko National University of Kyiv (KNU), University of Colorado, Boulder, Saint-Petersburg Electrotechnical University, Russian Academy of Sciences, Universidad Católica del Norte, University of Notre Dame, Aalto University, Politecnico di Torino, Martin-Luther-Universität Halle-Wittenberg, Helmholtz-Zentrum Dresden-Rossendorf, Brno University of Technology, Institute of Magnetism, Max Planck Institut für Intelligente Systeme, Northeastern University
Journal
IEEE Transactions on Magnetics
Band
58
Seiten
1-72
Anzahl der Seiten
72
ISSN
0018-9464
DOI
https://doi.org/10.1109/TMAG.2022.3149664
Publikationsdatum
2022
Peer-reviewed
Ja
ÖFOS 2012
103015 Kondensierte Materie, 103017 Magnetismus, 103008 Experimentalphysik
Schlagwörter
ASJC Scopus Sachgebiete
Electronic, Optical and Magnetic Materials, Electrical and Electronic Engineering
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/605cc3f2-01c2-4cc1-9952-54324df2e9f9