Die u:cris Detailansicht:
Almost inner derivations of Lie algebras II
- Autor(en)
- Dietrich Burde, Karel Dekimpe, Bert Verbeke
- Abstrakt
We continue the algebraic study of almost inner derivations of Lie algebras over a field of characteristic zero and determine these derivations for free nilpotent Lie algebras, for almost abelian Lie algebras, for Lie algebras whose solvable radical is abelian and for several classes of filiform nilpotent Lie algebras. We find a family of n-dimensional characteristically nilpotent filiform Lie algebras fn, for all n≥13, all of whose derivations are almost inner. Finally, we compare the almost inner derivations of Lie algebras considered over two different fields K⊇k for a finite-dimensional field extension.
- Organisation(en)
- Institut für Mathematik
- Externe Organisation(en)
- Katholieke Universiteit Leuven
- Journal
- INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION
- Band
- 31
- Seiten
- 341-364
- Anzahl der Seiten
- 24
- ISSN
- 0218-1967
- DOI
- https://doi.org/10.1142/S0218196721500181
- Publikationsdatum
- 2020
- Peer-reviewed
- Ja
- ÖFOS 2012
- 101001 Algebra
- Schlagwörter
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/c20a149b-a02f-4004-856e-d42c94fef6f7