Die u:cris Detailansicht:

Almost inner derivations of Lie algebras II

Autor(en)
Dietrich Burde, Karel Dekimpe, Bert Verbeke
Abstrakt

We continue the algebraic study of almost inner derivations of Lie algebras over a field of characteristic zero and determine these derivations for free nilpotent Lie algebras, for almost abelian Lie algebras, for Lie algebras whose solvable radical is abelian and for several classes of filiform nilpotent Lie algebras. We find a family of n-dimensional characteristically nilpotent filiform Lie algebras fn, for all n≥13, all of whose derivations are almost inner. Finally, we compare the almost inner derivations of Lie algebras considered over two different fields K⊇k for a finite-dimensional field extension.

Organisation(en)
Institut für Mathematik
Externe Organisation(en)
Katholieke Universiteit Leuven
Journal
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION
Band
31
Seiten
341-364
Anzahl der Seiten
24
ISSN
0218-1967
DOI
https://doi.org/10.1142/S0218196721500181
Publikationsdatum
2020
Peer-reviewed
Ja
ÖFOS 2012
101001 Algebra
Schlagwörter
ASJC Scopus Sachgebiete
Allgemeine Mathematik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/c20a149b-a02f-4004-856e-d42c94fef6f7