Die u:cris Detailansicht:

Neutral molecular cluster formation of sulfuric acid-dimethylamine observed in real time under atmospheric conditions

Autor(en)
Andreas Kürten, Tuija Jokinen, Mario Simon, Mikko Sipilä, Nina Sarnela, Heikki Junninen, Alexey Adamov, João Almeida, Antonio Amorim, Federico Bianchi, Martin Breitenlechner, Josef Dommen, Neil M Donahue, Jonathan Duplissy, Sebastian Ehrhart, Richard C Flagan, Alessandro Franchin, Jani Hakala, Armin Hansel, Martin Heinritzi, Manuel Hutterli, Juha Kangasluoma, Jasper Kirkby, Ari Laaksonen, Katrianne Lehtipalo, Markus Leiminger, Vladimir Makhmutov, Serge Mathot, Antti Onnela, Tuukka Petäjä, Arnaud P Praplan, Francesco Riccobono, Matti P Rissanen, Linda Rondo, Siegfried Schobesberger, John H Seinfeld, Gerhard Steiner, António Tomé, Jasmin Tröstl, Paul M Winkler, Christina Williamson, Daniela Wimmer, Penglin Ye, Urs Baltensperger, Kenneth S Carslaw, Markku Kulmala, Douglas R Worsnop, Joachim Curtius
Abstrakt

For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.

Organisation(en)
Aerosolphysik und Umweltphysik
Externe Organisation(en)
Johann Wolfgang Goethe-Universität Frankfurt am Main, University of Helsinki, Paul Scherrer Institute, Leopold-Franzens-Universität Innsbruck, Carnegie Mellon University, California Institute of Technology (Caltech), Tofwerk AG, Lebedev Physical Institute, European Organization for Nuclear Research (CERN), University of Leeds, Aerodyne Res Inc, University of Eastern Finland, Finnish Meteorological Institute, Universidade de Lisboa, Universidade da Beira Interior
Journal
Proceedings of the National Academy of Sciences of the United States of America (PNAS)
Band
111
Seiten
15019-15024
Anzahl der Seiten
6
ISSN
0027-8424
DOI
https://doi.org/10.1073/pnas.1404853111
Publikationsdatum
10-2014
Peer-reviewed
Ja
ÖFOS 2012
103037 Umweltphysik, 103039 Aerosolphysik
Schlagwörter
ASJC Scopus Sachgebiete
General
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/5a4c5a8b-6d7c-49c9-8600-320993545839