Die u:cris Detailansicht:

An orbital-based representation for accurate quantum machine learning

Autor(en)
Konstantin Karandashev, O. Anatole Von Lilienfeld
Abstrakt

We introduce an electronic structure based representation for quantum machine learning (QML) of electronic properties throughout chemical compound space. The representation is constructed using computationally inexpensive ab initio calculations and explicitly accounts for changes in the electronic structure. We demonstrate the accuracy and flexibility of resulting QML models when applied to property labels, such as total potential energy, HOMO and LUMO energies, ionization potential, and electron affinity, using as datasets for training and testing entries from the QM7b, QM7b-T, QM9, and LIBE libraries. For the latter, we also demonstrate the ability of this approach to account for molecular species of different charge and spin multiplicity, resulting in QML models that infer total potential energies based on geometry, charge, and spin as input.

Organisation(en)
Computergestützte Materialphysik
Externe Organisation(en)
Universität Basel
Journal
Journal of Chemical Physics
Band
156
Anzahl der Seiten
11
ISSN
0021-9606
DOI
https://doi.org/10.1063/5.0083301
Publikationsdatum
03-2022
Peer-reviewed
Ja
ÖFOS 2012
103006 Chemische Physik
Schlagwörter
ASJC Scopus Sachgebiete
Allgemeine Physik und Astronomie, Physical and Theoretical Chemistry
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/584fcf30-11dd-498a-a017-93dc69777fb0