Die u:cris Detailansicht:

Oxidation, reduction and semi-classical limit for quantum matrix geometries

Autor(en)
Laura O. Felder, Harold C. Steinacker
Abstrakt

Matrix configurations define noncommutative spaces endowed with extra structure including a generalized Laplace operator, and hence a metric structure. Made dynamical via matrix models, they describe rich physical systems including noncommutative gauge theory and emergent gravity. Refining the construction in [25], we construct a semi-classical limit through an immersed submanifold of complex projective space based on quasi-coherent states. We observe the phenomenon of oxidation, where the resulting semi-classical space acquires spurious extra dimensions. We propose to remove this artifact by passing to a leaf of a carefully chosen foliation, which allows to extract the geometrical content of the noncommutative spaces. This is demonstrated numerically via multiple examples.

Organisation(en)
Mathematische Physik
Externe Organisation(en)
Universität Wien
Journal
Journal of Geometry and Physics
Band
199
Anzahl der Seiten
15
ISSN
0393-0440
DOI
https://doi.org/10.48550/arXiv.2306.10771
Publikationsdatum
05-2024
Peer-reviewed
Ja
ÖFOS 2012
103012 Hochenergiephysik, 103028 Relativitätstheorie, 103019 Mathematische Physik
Schlagwörter
ASJC Scopus Sachgebiete
Mathematical Physics, Allgemeine Physik und Astronomie, Geometry and Topology
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/568f9ad5-2c10-4a11-8520-f4ced5cfc0ea