Die u:cris Detailansicht:
Oxidation, reduction and semi-classical limit for quantum matrix geometries
- Autor(en)
- Laura O. Felder, Harold C. Steinacker
- Abstrakt
Matrix configurations define noncommutative spaces endowed with extra structure including a generalized Laplace operator, and hence a metric structure. Made dynamical via matrix models, they describe rich physical systems including noncommutative gauge theory and emergent gravity. Refining the construction in [25], we construct a semi-classical limit through an immersed submanifold of complex projective space based on quasi-coherent states. We observe the phenomenon of oxidation, where the resulting semi-classical space acquires spurious extra dimensions. We propose to remove this artifact by passing to a leaf of a carefully chosen foliation, which allows to extract the geometrical content of the noncommutative spaces. This is demonstrated numerically via multiple examples.
- Organisation(en)
- Mathematische Physik
- Externe Organisation(en)
- Universität Wien
- Journal
- Journal of Geometry and Physics
- Band
- 199
- Anzahl der Seiten
- 15
- ISSN
- 0393-0440
- DOI
- https://doi.org/10.48550/arXiv.2306.10771
- Publikationsdatum
- 05-2024
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103012 Hochenergiephysik, 103028 Relativitätstheorie, 103019 Mathematische Physik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Mathematical Physics, Allgemeine Physik und Astronomie, Geometry and Topology
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/568f9ad5-2c10-4a11-8520-f4ced5cfc0ea