Die u:cris Detailansicht:

Propagation of Spin-Wave Packets in Individual Nanosized Yttrium Iron Garnet Magnonic Conduits

Autor(en)
Björn Heinz, Thomas Brächer, Michael Schneider, Qi Wang, Bert Lägel, Anna M. Friedel, David Breitbach, Steffen Steinert, Thomas Meyer, Martin Kewenig, Carsten Dubs, Philipp Pirro, Andrii V. Chumak
Abstrakt

Modern-day CMOS-based computation technology is reaching its fundamental limitations. The emerging field of magnonics, which utilizes spin waves for data transport and processing, proposes a promising path to overcome these limitations. Different devices have been demonstrated recently on the macro- and microscale, but the feasibility of the magnonics approach essentially relies on the scalability of the structure feature size down to the extent of a few 10 nm, which are typical sizes for the established CMOS technology. Here, we present a study of propagating spin-wave packets in individual yttrium iron garnet (YIG) conduits with lateral dimensions down to 50 nm. Space and time-resolved microfocused Brillouin-light-scattering (BLS) spectroscopy is used to characterize the YIG nanostructures and measure the spin-wave decay length and group velocity directly. The revealed magnon transport at the scale comparable to the scale of CMOS proves the general feasibility of magnon-based data processing.

Organisation(en)
Nanomagnetismus und Magnonik
Externe Organisation(en)
Technische Universität Kaiserslautern, Johannes Gutenberg-Universität Mainz, THATec Innovat GmbH, Innovent e.V. Technologieentwicklung Jena
Journal
Nano Letters
Band
20
Seiten
4220-4227
Anzahl der Seiten
8
ISSN
1530-6984
DOI
https://doi.org/10.1021/acs.nanolett.0c00657
Publikationsdatum
06-2020
Peer-reviewed
Ja
ÖFOS 2012
103017 Magnetismus, 103009 Festkörperphysik
Schlagwörter
ASJC Scopus Sachgebiete
Bioengineering, Allgemeine Chemie, Allgemeine Materialwissenschaften, Condensed Matter Physics, Mechanical Engineering
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/5323cdc5-b91f-41f6-aa8c-cc349bf37b7a