Die u:cris Detailansicht:
Absolute standard hydrogen electrode potential and redox potentials of atoms and molecules: machine learning aided first principles calculations
- Autor(en)
- Ryosuke Jinnouchi, Ferenc Karsai, Georg Kresse
- Abstrakt
Constructing a self-consistent first-principles framework that accurately predicts the properties of electron transfer reactions through finite-temperature molecular dynamics simulations is a dream of theoretical electrochemists and physical chemists. Yet, predicting even the absolute standard hydrogen electrode potential, the most fundamental reference for electrode potentials, proves to be extremely challenging. Here, we show that a hybrid functional incorporating 25% exact exchange enables quantitative predictions when statistically accurate phase-space sampling is achieved via thermodynamic integrations and thermodynamic perturbation theory calculations, utilizing machine-learned force fields and Δ-machine learning models. The application to seven redox couples, including molecules and transition metal ions, demonstrates that the hybrid functional can predict redox potentials across a wide range of potentials with an average error of 140 mV.
- Organisation(en)
- Computergestützte Materialphysik
- Externe Organisation(en)
- Toyota Central R&D Labs., Inc., VASP Software GmbH
- Journal
- Chemical Science
- Anzahl der Seiten
- 9
- ISSN
- 2041-6520
- DOI
- https://doi.org/10.48550/arXiv.2409.11000
- Publikationsdatum
- 12-2024
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103006 Chemische Physik, 103043 Computational Physics
- ASJC Scopus Sachgebiete
- Allgemeine Chemie
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/4e87495e-cc8f-40d2-909b-c96290de86aa