Die u:cris Detailansicht:

Stable fixed points of the Einstein flow with positive cosmological constant

Autor(en)
David Fajman, Klaus Kröncke
Abstrakt

We prove nonlinear stability for a large class of solutions to the Einstein equations with a positive cosmological constant and compact spatial topology in arbitrary dimensions, where the spatial metric is Einstein with either positive or negative Einstein constant. The proof uses the CMC Einstein flow and stability follows by an energy argument. We prove in addition that the development of non-CMC initial data close to the background contains a CMC hypersurface, which in turn implies that stability holds for arbitrary perturbations. Furthermore, we construct a one-parameter family of initial data such that above a critical parameter value the corresponding development is future and past incomplete.

Organisation(en)
Gravitationsphysik
Externe Organisation(en)
Universität Hamburg
Journal
Communications in Analysis and Geometry
Band
28
Seiten
1533–1576
Anzahl der Seiten
44
ISSN
1019-8385
DOI
https://doi.org/10.4310/CAG.2020.v28.n7.a2
Publikationsdatum
2015
Peer-reviewed
Ja
ÖFOS 2012
101006 Differentialgeometrie
Schlagwörter
ASJC Scopus Sachgebiete
Analysis, Geometry and Topology, Statistics and Probability, Statistics, Probability and Uncertainty
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/438ab932-459e-4e3c-ad19-3aade43c896a