Die u:cris Detailansicht:
Invariants of r-spin TQFTs and non-semisimplicity
- Autor(en)
- Nils Carqueville, Ehud Meir, Lóránt Szegedy
- Abstrakt
For a positive integer r, an r-spin topological quantum field theory is a 2-dimensional TQFT with tangential structure given by the r-fold cover of SO2. In particular, such a TQFT assigns a scalar invariant to every closed r-spin surface Σ. Given a sequence of scalars indexed by the set of diffeomorphism classes of all such Σ, we construct a symmetric monoidal category C and a C-valued r-spin TQFT which reproduces the given sequence. We also determine when such a sequence arises from a TQFT valued in an abelian category with finite-dimensional Hom spaces. In particular, we construct TQFTs with values in super vector spaces that can distinguish all diffeomorphism classes of r-spin surfaces, and we show that the Frobenius algebras associated to such TQFTs are necessarily non-semisimple.
- Organisation(en)
- Mathematische Physik
- Externe Organisation(en)
- University of Aberdeen, Universität Wien
- Journal
- Journal of Algebra
- Band
- 664/Part A
- Seiten
- 101-128
- Anzahl der Seiten
- 28
- ISSN
- 0021-8693
- DOI
- https://doi.org/10.48550/arXiv.2306.08608
- Publikationsdatum
- 02-2025
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103019 Mathematische Physik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Algebra and Number Theory
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/3a398d5f-80c2-42b0-9e28-be5525c233a1