Die u:cris Detailansicht:

Truncated Affine Rozansky–Witten Models as Extended TQFTs

Autor(en)
Ilka Brunner, Nils Carqueville, Daniel Roggenkamp
Abstrakt

We construct extended TQFTs associated to Rozansky--Witten models with target manifolds $T^*\mathbb{C}^n$. The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category $\mathcal{C}$ of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in $\mathcal{C}$ for every affine Rozansky--Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.

Organisation(en)
Mathematische Physik
Externe Organisation(en)
Ludwig-Maximilians-Universität München, Universität Mannheim
Journal
Communications in Mathematical Physics
Band
400
Seiten
371–415
Anzahl der Seiten
45
ISSN
0010-3616
DOI
https://doi.org/10.1007/s00220-022-04614-4
Publikationsdatum
04-2022
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
Schlagwörter
ASJC Scopus Sachgebiete
Statistical and Nonlinear Physics, Mathematical Physics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/37174768-4503-44e2-bb6f-31e11bccce14