Die u:cris Detailansicht:
Truncated Affine Rozansky–Witten Models as Extended TQFTs
- Autor(en)
- Ilka Brunner, Nils Carqueville, Daniel Roggenkamp
- Abstrakt
We construct extended TQFTs associated to Rozansky--Witten models with target manifolds $T^*\mathbb{C}^n$. The starting point of the construction is the 3-category whose objects are such Rozansky--Witten models, and whose morphisms are defects of all codimensions. By truncation, we obtain a (non-semisimple) 2-category $\mathcal{C}$ of bulk theories, surface defects, and isomorphism classes of line defects. Through a systematic application of the cobordism hypothesis we construct a unique extended oriented 2-dimensional TQFT valued in $\mathcal{C}$ for every affine Rozansky--Witten model. By evaluating this TQFT on closed surfaces we obtain the infinite-dimensional state spaces (graded by flavour and R-charges) of the initial 3-dimensional theory. Furthermore, we explicitly compute the commutative Frobenius algebras that classify the restrictions of the extended theories to circles and bordisms between them.
- Organisation(en)
- Mathematische Physik
- Externe Organisation(en)
- Ludwig-Maximilians-Universität München, Universität Mannheim
- Journal
- Communications in Mathematical Physics
- Band
- 400
- Seiten
- 371–415
- Anzahl der Seiten
- 45
- ISSN
- 0010-3616
- DOI
- https://doi.org/10.1007/s00220-022-04614-4
- Publikationsdatum
- 04-2022
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103019 Mathematische Physik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Statistical and Nonlinear Physics, Mathematical Physics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/37174768-4503-44e2-bb6f-31e11bccce14