Die u:cris Detailansicht:

Machine Learning Small Polaron Dynamics

Autor(en)
Viktor C. Birschitzky, Luca Leoni, Michele Reticcioli, Cesare Franchini
Abstrakt

Polarons are crucial for charge transport in semiconductors, significantly impacting material properties and device performance. The dynamics of small polarons can be investigated using first-principles molecular dynamics. However, the limited timescale of these simulations presents a challenge for adequately sampling infrequent polaron hopping events. Here, we introduce a message-passing neural network combined with first-principles molecular dynamics within the Born-Oppenheimer approximation that learns the polaronic potential energy surface by encoding the polaronic state, allowing for simulations of polaron hopping dynamics at the nanosecond scale. By leveraging the statistical significance of the long timescale, our framework can accurately estimate polaron (anisotropic) mobilities and activation barriers in prototypical polaronic oxides across different scenarios (hole polarons in rocksalt MgO and electron polarons in pristine and F-doped rutile TiO2) within experimentally measured ranges.

Organisation(en)
Computergestützte Materialphysik
Externe Organisation(en)
Università di Bologna
Journal
Physical Review Letters
Band
134
Anzahl der Seiten
8
ISSN
0031-9007
DOI
https://doi.org/10.48550/arXiv.2409.16179
Publikationsdatum
05-2025
Peer-reviewed
Ja
ÖFOS 2012
103018 Materialphysik, 102019 Machine Learning
ASJC Scopus Sachgebiete
Allgemeine Physik und Astronomie
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/2fed90b0-6a3b-4daa-9e07-ac647dffcedc