Die u:cris Detailansicht:
The product structure of MPS-under-permutations
- Autor(en)
- Marta Florido-Llinàs, Álvaro M. Alhambra, Rahul Trivedi, Norbert Schuch, David Pérez-García, J. Ignacio Cirac
- Abstrakt
Tensor network methods have proved to be highly effective in addressing a wide variety of physical scenarios, including those lacking an intrinsic one-dimensional geometry. In such contexts, it is possible for the problem to exhibit a weak form of permutational symmetry, in the sense that entanglement behaves similarly across any arbitrary bipartition. In this paper, we show that translationally-invariant (TI) matrix product states (MPS) with this property are trivial, meaning that they are either product states or superpositions of a few of them. The results also apply to non-TI generic MPS, as well as further relevant examples of MPS including the W state and the Dicke states in an approximate sense. Our findings motivate the usage of ans\"atze simpler than tensor networks in systems whose structure is invariant under permutations.
- Organisation(en)
- Quantenoptik, Quantennanophysik und Quanteninformation, Institut für Mathematik
- Externe Organisation(en)
- Max-Planck-Institut für Quantenoptik, Munich Center for Quantum Science and Technology (MCQST), Instituto de Física Teórica UAM-CSIC, Universidad Complutense De Madrid
- Seiten
- 1-15
- DOI
- https://doi.org/10.48550/arXiv.2410.19541
- Publikationsdatum
- 10-2024
- ÖFOS 2012
- 103025 Quantenmechanik, 103036 Theoretische Physik, 101028 Mathematische Modellierung
- Schlagwörter
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/61c096ab-80aa-48c3-b0e8-b7122ebd24b2