Die u:cris Detailansicht:
Quantum 3-SAT Is QMA(1)-Complete
- Autor(en)
- David Gosset, Daniel Nagaj
- Abstrakt
Quantum satisfiability is a constraint satisfaction problem that generalizes classical boolean satisfiability. In the quantum k-SAT problem, each constraint is specified by a k-local projector and is satisfied by any state in its nullspace. Bravyi showed that quantum 2-SAT can be solved efficiently on a classical computer and that quantum k-SAT with k >= 4 is QMA(1)-complete [S. Bravyi, Efficient Algorithm for a Quantum Analogue of 2-SAT, eprint arXiv: quant-ph/0602108, 2006]. Quantum 3-SAT was known to be contained in QMA1 [Bravyi, 2006], but its computational hardness was unknown until now. We prove that quantum 3-SAT is QMA1-hard, and therefore complete for this complexity class.
- Organisation(en)
- Quantenoptik, Quantennanophysik und Quanteninformation
- Externe Organisation(en)
- University of Waterloo (UW), Slovak Academy of Sciences (SAS)
- Journal
- SIAM. Journal on Computing (SICOMP)
- Band
- 45
- Seiten
- 1080-1128
- Anzahl der Seiten
- 49
- ISSN
- 0097-5397
- DOI
- https://doi.org/10.1137/140957056
- Publikationsdatum
- 2016
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103036 Theoretische Physik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Allgemeine Mathematik, Allgemeine Computerwissenschaft
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/2dc8f04f-a3b6-48e7-af60-42057448bcd2