Die u:cris Detailansicht:

Quantum 3-SAT Is QMA(1)-Complete

Autor(en)
David Gosset, Daniel Nagaj
Abstrakt

Quantum satisfiability is a constraint satisfaction problem that generalizes classical boolean satisfiability. In the quantum k-SAT problem, each constraint is specified by a k-local projector and is satisfied by any state in its nullspace. Bravyi showed that quantum 2-SAT can be solved efficiently on a classical computer and that quantum k-SAT with k >= 4 is QMA(1)-complete [S. Bravyi, Efficient Algorithm for a Quantum Analogue of 2-SAT, eprint arXiv: quant-ph/0602108, 2006]. Quantum 3-SAT was known to be contained in QMA1 [Bravyi, 2006], but its computational hardness was unknown until now. We prove that quantum 3-SAT is QMA1-hard, and therefore complete for this complexity class.

Organisation(en)
Quantenoptik, Quantennanophysik und Quanteninformation
Externe Organisation(en)
University of Waterloo (UW), Slovak Academy of Sciences (SAS)
Journal
SIAM. Journal on Computing (SICOMP)
Band
45
Seiten
1080-1128
Anzahl der Seiten
49
ISSN
0097-5397
DOI
https://doi.org/10.1137/140957056
Publikationsdatum
2016
Peer-reviewed
Ja
ÖFOS 2012
103036 Theoretische Physik
Schlagwörter
ASJC Scopus Sachgebiete
Allgemeine Mathematik, Allgemeine Computerwissenschaft
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/2dc8f04f-a3b6-48e7-af60-42057448bcd2