Die u:cris Detailansicht:

Transformation of PET raw data into images for event classification using convolutional neural networks

Autor(en)
Paweł Konieczka, Lech Raczyński, Wojciech Wiślicki, Oleksandr Fedoruk, Konrad Klimaszewski, Przemysław Kopka, Wojciech Krzemień, Roman Y. Shopa, Jakub Baran, Aurélien Coussat, Neha Chug, Catalina Curceanu, Eryk Czerwiński, Meysam Dadgar, Kamil Dulski, Aleksander Gajos, Beatrix C. Hiesmayr, Krzysztof Kacprzak, Łukasz Kapłon, Grzegorz Korcyl, Tomasz Kozik, Deepak Kumar, Szymon Niedźwiecki, Szymon Parzych, Elena Pérez Del Río, Sushil Sharma, Shivani Shivani, Magdalena Skurzok, Ewa Łucja Stepień, Faranak Tayefi, Paweł Moskal
Abstrakt

In positron emission tomography (PET) studies, convolutional neural networks (CNNs) may be applied directly to the reconstructed distribution of radioactive tracers injected into the patient's body, as a pattern recognition tool. Nonetheless, unprocessed PET coincidence data exist in tabular format. This paper develops the transformation of tabular data into n-dimensional matrices, as a preparation stage for classification based on CNNs. This method explicitly introduces a nonlinear transformation at the feature engineering stage and then uses principal component analysis to create the images. We apply the proposed methodology to the classification of simulated PET coincidence events originating from NEMA IEC and anthropomorphic XCAT phantom. Comparative studies of neural network architectures, including multilayer perceptron and convolutional networks, were conducted. The developed method increased the initial number of features from 6 to 209 and gave the best precision results (79.8%) for all tested neural network architectures; it also showed the smallest decrease when changing the test data to another phantom.

Organisation(en)
Quantenoptik, Quantennanophysik und Quanteninformation
Externe Organisation(en)
National Centre for Nuclear Research (NCBJ), Jagiellonian University in Krakow, INFN - Laboratori Nazionali Di Frascati
Journal
Mathematical Biosciences and Engineering
Band
20
Seiten
14938-14958
Anzahl der Seiten
21
ISSN
1547-1063
DOI
https://doi.org/10.3934/mbe.2023669
Publikationsdatum
07-2023
Peer-reviewed
Ja
ÖFOS 2012
103012 Hochenergiephysik, 302071 Radiologie, 102019 Machine Learning
Schlagwörter
ASJC Scopus Sachgebiete
Modelling and Simulation, Allgemeine Agrar- und Biowissenschaften, Computational Mathematics, Applied Mathematics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/2af6ede0-8da0-4f47-8718-474277fef4df