Die u:cris Detailansicht:

Quantum complementarity and logical indeterminacy

Autor(en)
Caslav Brukner
Abstrakt

Whenever a mathematical proposition to be proved requires more information than it is contained in an axiomatic system, it can neither be proved nor disproved, i.e. it is undecidable, or logically undetermined, within this axiomatic system. I will show that certain mathematical propositions on a d-valent function of a binary argument can be encoded in d-dimensional quantum states of mutually unbiased basis (MUB) sets, and truth values of the propositions can be tested in MUB measurements. I will then show that a proposition is undecidable within the system of axioms encoded in the state, if and only if the measurement associated with the proposition gives completely random outcomes.

Organisation(en)
Quantenoptik, Quantennanophysik und Quanteninformation
Journal
Natural Computing
Band
8
Seiten
449-453
Anzahl der Seiten
5
ISSN
1567-7818
DOI
https://doi.org/10.1007/s11047-009-9118-z
Publikationsdatum
2009
Peer-reviewed
Ja
ÖFOS 2012
1030 Physik, Astronomie
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/207d4496-0e86-43ff-aaa9-0b759137c123