Die u:cris Detailansicht:
Micromagnetic simulation and optimization of spin-wave transducers
- Autor(en)
- Florian Bruckner, Kristýna Davídková, Claas Abert, Andrii Chumak, Dieter Suess
- Abstrakt
The increasing demand for higher data volume and faster transmission in modern wireless telecommunication systems has elevated requirements for 5G high-band RF hardware. Spin-Wave technology offers a promising solution, but its adoption is hindered by significant insertion loss stemming from the low efficiency of magnonic transducers. This work introduces a micromagnetic simulation method for directly computing the spin-wave resistance, the real part of spin-wave impedance, which is crucial for optimizing magnonic transducers. By integrating into finite-difference micromagnetic simulations, this approach extends analytical models to arbitrary transducer geometries. We demonstrate its effectiveness through parameter studies on transducer design and waveguide properties, identifying key strategies to enhance the overall transducer efficiency. Our studies show that by varying single parameters of the transducer geometry or the YIG thickness, the spin-wave efficiency, the parameter describing the efficiency of the transfer of electromagnetic energy to the spin wave, can reach values up to 0.75. The developed numerical model allows further fine-tuning of the transducers to achieve even higher efficiencies.
- Organisation(en)
- Physik Funktioneller Materialien, Nanomagnetismus und Magnonik
- Journal
- Scientific Reports
- Band
- 15
- Anzahl der Seiten
- 8
- ISSN
- 2045-2322
- DOI
- https://doi.org/10.48550/arXiv.2501.16553
- Publikationsdatum
- 06-2025
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103043 Computational Physics, 103017 Magnetismus
- ASJC Scopus Sachgebiete
- General
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/20542f3a-bbee-49fd-a843-3413dd62b323