Die u:cris Detailansicht:

A Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons

Autor(en)
Marissa Giustina, Marijn A. M. Versteegh, Soeren Wengerowsky, Johannes Handsteiner, Armin Hochrainer, Kevin Phelan, Fabian Steinlechner, Johannes Kofler, Jan-Ake Larsson, Carlos Abellan, Waldimar Amaya, Morgan W. Mitchell, Joern Beyer, Thomas Gerrits, Adriana E. Lita, Lynden K. Shalm, Sae Woo Nam, Thomas Scheidl, Rupert Ursin, Bernhard Wittmann, Anton Zeilinger
Abstrakt

John Bell's theorem of 1964 states that local elements of physical reality, existing independent of measurement, are inconsistent with the predictions of quantum mechanics (Bell, J. S. (1964), Physics (College. Park. Md). Specifically, correlations between measurement results from distant entangled systems would be smaller than predicted by quantum physics. This is expressed in Bell's inequalities. Employing modifications of Bell's inequalities, many experiments have been performed that convincingly support the quantum predictions. Yet, all experiments rely on assumptions, which provide loopholes for a local realist explanation of the measurement. Here we report an experiment with polarization-entangled photons that simultaneously closes the most significant of these loopholes. We use a highly efficient source of entangled photons, distributed these over a distance of 58.5 meters, and implemented rapid random setting generation and high-efficiency detection to observe a violation of a Bell inequality with high statistical significance. The merely statistical probability of our results to occur under local realism is less than 3.74×10

-31, corresponding to an 11.5 standard deviation effect.

Organisation(en)
Quantenoptik, Quantennanophysik und Quanteninformation
Externe Organisation(en)
Barcelona Institute of Science & Technology, Linköping University, Institució Catalana de Recerca i Estudis Avançats (ICREA), Physikalisch-Technische Bundesanstalt, U.S. Department of Commerce, Österreichische Akademie der Wissenschaften (ÖAW)
Anzahl der Seiten
9
DOI
https://doi.org/10.1117/12.2277696
Publikationsdatum
2017
Peer-reviewed
Ja
ÖFOS 2012
103025 Quantenmechanik, 103026 Quantenoptik
Schlagwörter
ASJC Scopus Sachgebiete
Electronic, Optical and Magnetic Materials, Condensed Matter Physics, Applied Mathematics, Electrical and Electronic Engineering, Computer Science Applications
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/1fe73d5f-a5e9-402d-adca-0861ce965719