Die u:cris Detailansicht:
A pointwise bipolar theorem
- Autor(en)
- Daniel Bartl, Michael Kupper
- Abstrakt
We provide a pointwise bipolar theorem for lim inf-closed convex sets of positive Borel measurable functions on a σ-compact metric space without the assumption that the polar is a tight set of measures. As applications we derive a version of the transport duality under nontight marginals, and a superhedging duality for semistatic hedging in discrete time.
- Organisation(en)
- Institut für Mathematik
- Externe Organisation(en)
- Universität Konstanz
- Journal
- Proceedings of the American Mathematical Society
- Band
- 147
- Seiten
- 1483-1495
- Anzahl der Seiten
- 13
- ISSN
- 0002-9939
- DOI
- https://doi.org/10.1090/proc/14231
- Publikationsdatum
- 2019
- Peer-reviewed
- Ja
- ÖFOS 2012
- 101024 Wahrscheinlichkeitstheorie, 101007 Finanzmathematik
- Schlagwörter
- ASJC Scopus Sachgebiete
- Applied Mathematics, Allgemeine Mathematik
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/f633155c-da91-41b1-8c7f-17ebc98cd81d