Die u:cris Detailansicht:

A pointwise bipolar theorem

Autor(en)
Daniel Bartl, Michael Kupper
Abstrakt

We provide a pointwise bipolar theorem for lim inf-closed convex sets of positive Borel measurable functions on a σ-compact metric space without the assumption that the polar is a tight set of measures. As applications we derive a version of the transport duality under nontight marginals, and a superhedging duality for semistatic hedging in discrete time.

Organisation(en)
Institut für Mathematik
Externe Organisation(en)
Universität Konstanz
Journal
Proceedings of the American Mathematical Society
Band
147
Seiten
1483-1495
Anzahl der Seiten
13
ISSN
0002-9939
DOI
https://doi.org/10.1090/proc/14231
Publikationsdatum
2019
Peer-reviewed
Ja
ÖFOS 2012
101024 Wahrscheinlichkeitstheorie, 101007 Finanzmathematik
Schlagwörter
ASJC Scopus Sachgebiete
Applied Mathematics, Allgemeine Mathematik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/f633155c-da91-41b1-8c7f-17ebc98cd81d