Die u:cris Detailansicht:

On matrix geometry

Autor(en)
Harold Steinacker
Abstrakt

The foundations of matrix geometry are discussed, which provides the basis for recent progress on the effective geometry and gravity in Yang-Mills matrix models. Basic examples lead to a notion of embedded noncommutative spaces (branes) with emergent Riemannian geometry. This class of configurations turns out to be preserved under small deformations, and is therefore appropriate for matrix models. The relation with spectral geometry is discussed. A possible realization of sufficiently generic 4-dimensional geometries as noncommutative branes in D=10 matrix models is sketched.

Organisation(en)
Mathematische Physik
Journal
Proceedings of Science (PoS)
Band
1101
Seiten
1-15
Anzahl der Seiten
15
Publikationsdatum
2011
Peer-reviewed
Ja
ÖFOS 2012
103012 Hochenergiephysik, 103019 Mathematische Physik
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/1b9d8789-26b3-49e0-b113-5cfd327f55ce