Die u:cris Detailansicht:

The central role of density functional theory in the AI age

Autor(en)
Bing Huang, Guido Falk von Rudorff, O. Anatole von Lilienfeld
Abstrakt

Density functional theory (DFT) plays a pivotal role in chemical and materials science because of its relatively high predictive power, applicability, versatility, and computational efficiency. We review recent progress in machine learning (ML) model developments, which have relied heavily on DFT for synthetic data generation and for the design of model architectures. The general relevance of these developments is placed in a broader context for chemical and materials sciences. DFT-based ML models have reached high efficiency, accuracy, scalability, and transferability and pave the way to the routine use of successful experimental planning software within self-driving laboratories.

Organisation(en)
Computergestützte Materialphysik
Externe Organisation(en)
Universität Kassel, Vector Institute for Artificial Intelligence, University of Toronto, Technische Universität Berlin
Journal
Science
Band
381
Seiten
170-175
Anzahl der Seiten
6
ISSN
0036-8075
DOI
https://doi.org/10.1126/science.abn3445
Publikationsdatum
07-2023
Peer-reviewed
Ja
ÖFOS 2012
103006 Chemische Physik, 102019 Machine Learning
ASJC Scopus Sachgebiete
General
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/197ca089-8a78-4bd6-9478-0fc307153f5b