Die u:cris Detailansicht:

A Phragmen-Lindelof Theorem via Proximate Orders, and the Propagation of Asymptotics

Autor(en)
Javier Jiménez-Garrido, Javier Sanz, Gerhard Schindl
Abstrakt

We prove that, for asymptotically bounded holomorphic functions in a sector in C, an asymptotic expansion in a single direction towards the vertex with constraints in terms of a logarithmically convex sequence admitting a nonzero proximate order entails asymptotic expansion in the whole sector with control in terms of the same sequence. This generalizes a result by Fruchard and Zhang for Gevrey asymptotic expansions, and the proof strongly rests on a suitably refined version of the classical Phragmen-Lindelof theorem, here obtained for functions whose growth in a sector is specified by a nonzero proximate order in the sense of Lindelof and Valiron.

Organisation(en)
Institut für Mathematik
Externe Organisation(en)
University of Valladolid
Journal
Journal of Geometric Analysis
Band
30
Seiten
3458-3483
ISSN
1050-6926
DOI
https://doi.org/10.1007/s12220-019-00203-5
Publikationsdatum
2019
Peer-reviewed
Ja
ÖFOS 2012
101002 Analysis
Schlagwörter
ASJC Scopus Sachgebiete
Geometry and Topology
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/2b712e3f-a743-4288-a374-c54099cdc709