Die u:cris Detailansicht:

Survival of newly formed particles in haze conditions

Autor(en)
, Ruby Marten, Mao Xiao, Birte Rörup, Mingyi Wang, Weimeng Kong, Xu Cheng He, Dominik Stolzenburg, Joschka Pfeifer, Guillaume Marie, Dongyu S. Wang, Wiebke Scholz, Andrea Baccarini, Chuan Ping Lee, Antonio Amorim, Rima Baalbaki, David M. Bell, Barbara Bertozzi, Lucía Caudillo, Biwu Chu, Lubna Dada, Jonathan Duplissy, Henning Finkenzeller, Loïc Gonzalez Carracedo, Manuel Granzin, Armin Hansel, Martin Heinritzi, Victoria Hofbauer, Deniz Kemppainen, Andreas Kürten, Markus Lampimäki, Katrianne Lehtipalo, Vladimir Makhmutov, Hanna E. Manninen, Bernhard Mentler, Tuukka Petäjä, Maxim Philippov, Jiali Shen, Mario Simon, Yuri Stozhkov, António Tomé, Andrea C. Wagner, Yonghong Wang, Stefan K. Weber, Yusheng Wu, Marcel Zauner-Wieczorek, Joachim Curtius, Markku Kulmala, Ottmar Möhler, Rainer Volkamer, Paul M. Winkler, Douglas R. Worsnop, Josef Dommen, Richard C. Flagan, Jasper Kirkby, Neil M. Donahue, Houssni Lamkaddam, Urs Baltensperger, Imad El Haddad
Abstrakt

Intense new particle formation events are regularly observed under highly polluted conditions, despite the high loss rates of nucleated clusters. Higher than expected cluster survival probability implies either ineffective scavenging by pre-existing particles or missing growth mechanisms. Here we present experiments performed in the CLOUD chamber at CERN showing particle formation from a mixture of anthropogenic vapours, under condensation sinks typical of haze conditions, up to 0.1 s−1. We find that new particle formation rates substantially decrease at higher concentrations of pre-existing particles, demonstrating experimentally for the first time that molecular clusters are efficiently scavenged by larger sized particles. Additionally, we demonstrate that in the presence of supersaturated gas-phase nitric acid (HNO3) and ammonia (NH3), freshly nucleated particles can grow extremely rapidly, maintaining a high particle number concentration, even in the presence of a high condensation sink. Such high growth rates may explain the high survival probability of freshly formed particles under haze conditions. We identify under what typical urban conditions HNO3 and NH3 can be expected to contribute to particle survival during haze.

Organisation(en)
Aerosolphysik und Umweltphysik
Externe Organisation(en)
Paul Scherrer Institute, European Organization for Nuclear Research (CERN), Leopold-Franzens-Universität Innsbruck, Universidade de Lisboa, University of Colorado, Boulder, Russian Academy of Sciences, Universidade da Beira Interior, École polytechnique fédérale de Lausanne, University of Helsinki, Carnegie Mellon University, California Institute of Technology (Caltech), Johann Wolfgang Goethe-Universität Frankfurt am Main, Karlsruher Institut für Technologie, Finnish Meteorological Institute, Aerodyne Res Inc
Journal
Environmental Science: Atmospheres
Band
2
Seiten
491-499
Anzahl der Seiten
9
ISSN
2634-3606
DOI
https://doi.org/10.1039/d2ea00007e
Publikationsdatum
04-2022
Peer-reviewed
Ja
ÖFOS 2012
103039 Aerosolphysik, 105208 Atmosphärenchemie, 103037 Umweltphysik
ASJC Scopus Sachgebiete
Analytical Chemistry, Chemistry (miscellaneous), Environmental Chemistry, Pollution
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/17e4aa80-4c69-42da-b88b-bd6f35a04a5d