Die u:cris Detailansicht:
Deep Learning the Functional Renormalization Group
- Autor(en)
- Domenico Di Sante, Matija Medvidović, Alessandro Toschi, Giorgio Sangiovanni, Cesare Franchini, Anirvan M. Sengupta, Andrew J. Millis
- Abstrakt
We perform a data-driven dimensionality reduction of the scale-dependent four-point vertex function characterizing the functional renormalization group (FRG) flow for the widely studied two-dimensional t-t′ Hubbard model on the square lattice. We demonstrate that a deep learning architecture based on a neural ordinary differential equation solver in a low-dimensional latent space efficiently learns the FRG dynamics that delineates the various magnetic and d-wave superconducting regimes of the Hubbard model. We further present a dynamic mode decomposition analysis that confirms that a small number of modes are indeed sufficient to capture the FRG dynamics. Our Letter demonstrates the possibility of using artificial intelligence to extract compact representations of the four-point vertex functions for correlated electrons, a goal of utmost importance for the success of cutting-edge quantum field theoretical methods for tackling the many-electron problem.
- Organisation(en)
- Computergestützte Materialphysik
- Externe Organisation(en)
- Università di Bologna, Flatiron Institute, Columbia University in the City of New York, Technische Universität Wien, Julius-Maximilians-Universität Würzburg, Rutgers University
- Journal
- Physical Review Letters
- Band
- 129
- Anzahl der Seiten
- 7
- ISSN
- 0031-9007
- DOI
- https://doi.org/10.1103/PhysRevLett.129.136402
- Publikationsdatum
- 09-2022
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103015 Kondensierte Materie, 102019 Machine Learning
- ASJC Scopus Sachgebiete
- Allgemeine Physik und Astronomie
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/16aa9694-21b5-4522-9205-a3cf6955c00d