Die u:cris Detailansicht:

Incompressibility Estimates for the Laughlin Phase

Autor(en)
Nicolas Rougerie, Jakob Yngvason
Abstrakt

This paper has its motivation in the study of the Fractional Quantum Hall Effect. We consider 2D quantum particles submitted to a strong perpendicular magnetic field, reducing admissible wave functions to those of the Lowest Landau Level. When repulsive interactions are strong enough in this model, highly correlated states emerge, built on Laughlin’s famous wave function. We investigate a model for the response of such strongly correlated ground states to variations of an external potential. This leads to a family of variational problems of a new type. Our main results are rigorous energy estimates demonstrating a strong rigidity of the response of strongly correlated states to the external potential. In particular, we obtain estimates indicating that there is a universal bound on the maximum local density of these states in the limit of large particle number. We refer to these as incompressibility estimates.

Organisation(en)
Mathematische Physik, Forschungsplattform Internationales Erwin Schrödinger Institut für Mathematik und Physik
Externe Organisation(en)
Université Joseph-Fourier (Grenoble-I)
Journal
Communications in Mathematical Physics
Band
336
Seiten
1109-1140
Anzahl der Seiten
32
ISSN
0010-3616
DOI
https://doi.org/10.1007/s00220-014-2232-5
Publikationsdatum
12-2014
Peer-reviewed
Ja
ÖFOS 2012
103019 Mathematische Physik
ASJC Scopus Sachgebiete
Statistical and Nonlinear Physics, Mathematical Physics
Link zum Portal
https://ucrisportal.univie.ac.at/de/publications/15cc1f75-d5a3-4751-9739-2948994f9a0a