Die u:cris Detailansicht:
Experimental quantum-enhanced kernel-based machine learning on a photonic processor
- Autor(en)
- Zhenghao Yin, Iris Agresti, Giovanni de Felice, Douglas Brown, Alexis Toumi, Ciro Pentangelo, Simone Piacentini, Andrea Crespi, Francesco Ceccarelli, Roberto Osellame, Bob Coecke, Philip Walther
- Abstrakt
Recently, machine learning has had remarkable impact in scientific to everyday-life applications. However, complex tasks often require the consumption of unfeasible amounts of energy and computational power. Quantum computation may lower such requirements, although it is unclear whether enhancements are reachable with current technologies. Here we demonstrate a kernel method on a photonic integrated processor to perform a binary classification task. We show that our protocol outperforms state-of-the-art kernel methods such as gaussian and neural tangent kernels by exploiting quantum interference, and provides further improvements in accuracy by offering single-photon coherence. Our scheme does not require entangling gates and can modify the system dimension through additional modes and injected photons. This result gives access to more efficient algorithms and to formulating tasks where quantum effects improve standard methods.
- Organisation(en)
- Forschungsverbund Quantum Aspects of Space Time, Quantenoptik, Quantennanophysik und Quanteninformation
- Externe Organisation(en)
- Quantinuum, Politecnico di Milano, Consiglio Nazionale delle Ricerche, Österreichische Akademie der Wissenschaften (ÖAW)
- Journal
- Nature Photonics
- Anzahl der Seiten
- 9
- ISSN
- 1749-4885
- DOI
- https://doi.org/10.1038/s41566-025-01682-5
- Publikationsdatum
- 06-2025
- Peer-reviewed
- Ja
- ÖFOS 2012
- 103025 Quantenmechanik, 103026 Quantenoptik
- ASJC Scopus Sachgebiete
- Electronic, Optical and Magnetic Materials, Atomic and Molecular Physics, and Optics
- Link zum Portal
- https://ucrisportal.univie.ac.at/de/publications/101d6541-c0eb-4ae5-977e-bf10e7e9f8d2